Antworten:
Die fünf aufeinander folgenden Zahlen sind
Erläuterung:
Nennen wir die kleinste der fünf Nummern
Wir wissen, dass die Summe dieser vier Zahlen sein muss
Da haben wir eingestellt
Hoffe das hat geholfen!
Antworten:
30, 31, 32, 33, 34
Erläuterung:
Lassen
Aufeinanderfolgende ganze Zahl bis n:
Aufeinanderfolgende ganze Zahl bis
Aufeinanderfolgende ganze Zahl bis
Aufeinanderfolgende ganze Zahl bis
Okay so:
Die ganzen Zahlen sind also
Die Summe von vier aufeinander folgenden ungeraden Ganzzahlen ist drei Mal mehr als das 5-fache der kleinsten der Ganzzahlen. Wie lauten die Ganzzahlen?
N -> {9,11,13,15} color (blue) ("Erstellen der Gleichungen") Sei der erste ungerade Term n Sei die Summe aller Terme gleich s Dann wird der Term 1-> n der Term 2-> n +2 Term 3-> n + 4 Term 4-> n + 6 Dann s = 4n + 12 ............................ ..... (1) Da s = 3 + 5n ist .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equating (1) bis (2) und damit das Variable s 4n + 12 = s = 3 + 5n Sammeln von Gleichungen 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Die Summe von drei aufeinander folgenden geraden Ganzzahlen ist 12 weniger als die mittlere Ganzzahl. Was ist die Antwort?
Color (crimson) ("Die drei aufeinander folgenden geraden Zahlen sind" -8, -6, -4. Sei a, b, c die drei ganzen Zahlen. a = b -2, c = b + 2 a + b + c = 3b = b - 12, "3b - b = -12" oder "b = -6:. a = b - 2 = -6 - 2 = -8" c = b + 2 = -6 + 2 = -4
Die Formel auf die Summe der N-Ganzzahlen kennen a) Wie ist die Summe der ersten N aufeinander folgenden quadratischen Ganzzahlen: Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Summe der ersten N aufeinander folgenden Würfel-Ganzzahlen Sigma_ (k = 1) ^ N k ^ 3?
Für S_k (n) = sum_ {i = 0} ^ ni ^ kS_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1 / 6n (1 + n) (1 + 2n) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Wir haben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + Summe_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 Auflösen für sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-summe_ {i = 0} ^ ni aber summe {{i = 0} ^ ni = ((n + 1) n) / 2 so summe_ {i = 0} ^ ni ^