Was ist die Standardform von y = 8 (x - 1) (x ^ 2 +6) (x ^ 3 + 8)?

Was ist die Standardform von y = 8 (x - 1) (x ^ 2 +6) (x ^ 3 + 8)?
Anonim

Antworten:

# y = 8x ^ 6-8x ^ 5 + 48x ^ 4 + 16x ^ 3-64x ^ 2 + 384x-384 #

Erläuterung:

Es gibt viele Möglichkeiten, dieses Polynom zu erweitern. So habe ich es gemacht:

Schritt eins

Erweitern Sie die letzten beiden Klammern.

# (x ^ 2 + 6) (x ^ 3 + 8) = x ^ 5 + 6x ^ 3 + 8x ^ 2 + 48 #

Schritt zwei

Multipliziere alles mit 8;

# 8 (x ^ 2 + 6) (x ^ 3 + 8) = 8 (x ^ 5 + 6x ^ 3 + 8x ^ 2 + 48) #

# 8 (x ^ 5 + 6x ^ 3 + 8x ^ 2 + 48) = 8x ^ 5 + 48x ^ 3 + 64x ^ 2 + 384 #

Schritt drei

Mal # (x-1) #

# 8 (x-1) (x ^ 2 + 6) (x ^ 3 + 8) = 8 (x-1) (x ^ 5 + 6x ^ 3 + 8x ^ 2 + 48) #

# 8 (x-1) (x ^ 5 + 6x ^ 3 + 8x ^ 2 + 48) = (x-1) (8x ^ 5 + 48x ^ 3 + 64x ^ 2 + 384) #

# (x-1) (8x ^ 5 + 48x ^ 3 + 64x ^ 2 + 384) = 8x ^ 6-8x ^ 5 + 48x ^ 4 + 16x ^ 3-64x ^ 2 + 384x-384 #

Hoffentlich hilft das:)