
Antworten:
Erläuterung:
Antworten:
y = 3 oder y = -3
Erläuterung:
Zeigen Sie, dass cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2 ist. Ich bin etwas verwirrt, wenn ich Cos²4π / 10 = cos² (π-6π / 10) und cos²9π / 10 = cos² (π-π / 10) mache, es wird negativ als cos (180 ° -theta) = - costheta in der zweite Quadrant. Wie überprüfe ich die Frage?

Siehe unten. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4 pi) / 10)] = 2 * 1 = 2 = RHS
Die Fläche eines Dreiecks beträgt 24 cm². Die Basis ist 8 cm länger als die Höhe. Verwenden Sie diese Informationen, um eine quadratische Gleichung festzulegen. Lösen Sie die Gleichung, um die Länge der Basis zu ermitteln.

Die Länge der Basis sei x, also die Höhe x-8, also ist die Fläche des Dreiecks 1/2 x (x-8) = 24 oder x ^ 2 -8x-48 = 0 oder x ^ 2 -12x + 4x-48 = 0 oder x (x-12) +4 (x-12) = 0 oder (x-12) (x + 4) = 0, also entweder x = 12 oder x = -4 Die Länge des Dreiecks kann jedoch nicht negativ sein, daher beträgt die Basislänge hier 12 cm
Welche Aussage beschreibt die Gleichung (x + 5) 2 + 4 (x + 5) + 12 = 0 am besten? Die Gleichung hat eine quadratische Form, da sie mit einer u-Substitution u = (x + 5) als quadratische Gleichung umgeschrieben werden kann. Die Gleichung hat eine quadratische Form, denn wenn sie erweitert wird,

Wie unten erläutert, wird die u-Substitution sie in u als quadratisch beschreiben. Bei Quadrat in x hat seine Expansion die höchste Potenz von x als 2, am besten als quadratisch in x.