Antworten:
Erläuterung:
Zeigen Sie, dass cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2 ist. Ich bin etwas verwirrt, wenn ich Cos²4π / 10 = cos² (π-6π / 10) und cos²9π / 10 = cos² (π-π / 10) mache, es wird negativ als cos (180 ° -theta) = - costheta in der zweite Quadrant. Wie überprüfe ich die Frage?
Siehe unten. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4 pi) / 10)] = 2 * 1 = 2 = RHS
Wie beurteilen Sie cos ^ -1 (cos ((7pi) / 6))?
= 5pi / 6 kleinster Wert cos ^ -1 (cos (7pi / 6)) = cos ^ -1 (cos (pi + pi / 6)) = cos ^ -1 (-cos (pi / 6)) = cos ^ -1 (cos (pi-pi / 6)) = cos ^ -1 (cos (5 pi / 6)) = 5 pi / 6
Wie beurteilen Sie sin ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) sin ((7pi) / 18)?
1/2 Diese Gleichung kann mit etwas Wissen über einige trigonometrische Identitäten gelöst werden.In diesem Fall sollte die Ausdehnung der Sünde (A-B) bekannt sein: Sin (A-B) = SinAcosB-CosAsinB Sie werden feststellen, dass dies der Gleichung in der Frage sehr ähnlich sieht. Mit Hilfe dieses Wissens können wir es lösen: sin ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) sin ((7pi) / 18) = sin ((5pi) / 9 - (7pi) / 18) = sin ((10pi) / 18 - (7pi) / 18) = sin ((3pi) / 18) = sin ((pi) / 6), und das hat einen exakten Wert von 1/2