Welchen Wert hat tan ( cos ^ {- 1} frac {3} {5} + tan ^ {- 1} frac {1} {4})?

Welchen Wert hat tan ( cos ^ {- 1} frac {3} {5} + tan ^ {- 1} frac {1} {4})?
Anonim

Antworten:

#rarrtan ^ (-1) (cos ^ (-1) (3/5) + tan ^ (-1) (1/4)) = 19/8 #

Erläuterung:

Lassen #cos ^ (- 1) (3/5) = x # dann

# rarrsecx = 5/3 #

# rarrtanx = sqrt (sec ^ 2x-1) = sqrt ((5/3) ^ 2-1) = sqrt ((5 ^ 2-3 ^ 2) / 3 ^ 2) = 4/3 #

# rarrx = tan ^ (- 1) (4/3) = cos ^ (- 1) (3/5) #

Jetzt mit #tan ^ (-1) (A) + tan ^ (-1) (B) = tan ^ (-1) ((A + B) / (1-AB)) #

#rarrtan ^ (-1) (cos ^ (- 1) (3/5) + tan ^ (-1) (1/4)) #

# = tan ^ (-1) (tan ^ (-1) (4/3) + tan ^ (-1) (1/4)) #

# = tan ^ (- 1) (tan ^ (-1) ((4/3 + 1/4) / (1- (4/3) * (1/4)))

#=(19/12)/(8/12)=19/8#