
Antworten:
Erläuterung:
Die Formel für die Fläche eines Rechtecks lautet Länge mal Breite:
In unserem Fall haben wir:
Was passiert also, wenn wir die Länge verdoppeln? Wir bekommen:
Und so haben wir in unserem Beispiel
Die Länge eines Rechtecks überschreitet seine Breite um 4 cm. Wenn die Länge um 3 cm und die Breite um 2 cm vergrößert wird, überschreitet die neue Fläche die ursprüngliche Fläche um 79 cm². Wie finden Sie die Abmessungen des gegebenen Rechtecks?

13 cm und 17 cm x und x + 4 sind die ursprünglichen Abmessungen. x + 2 und x + 7 sind die neuen Abmessungen x (x + 4) + 79 = (x + 2) (x + 7) x ^ 2 + 4x + 79 = x ^ 2 + 7x + 2x + 14 x ^ 2 + 4x + 79 = x ^ 2 + 9x + 14 4x + 79 = 9x + 1479 = 5x + 1465 = 5x x = 13
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?

Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7
Die Länge eines Rechtecks beträgt 5 m mehr als seine Breite. Wenn die Fläche des Rechtecks 15 m2 beträgt, wie groß sind die Abmessungen des Rechtecks auf ein Zehntel eines Zentimeter?

"length" = 7,1 m "" auf 1 Dezimalstelle gerundet "width" -Farbe (weiß) (..) = 2,1m "" auf 1 Dezimalstellenfarbe (blau) gerundet ("Ausarbeitung der Gleichung") Sei length L L sei width be w Sei Fläche a Dann sei a = Lxxw ............................ Gleichung (1) Aber in der Frage heißt es: "Die Länge eines Rechtecks ist 5 m länger als seine Breite" -> L = w + 5 Durch Ersetzen von L in Gleichung (1) haben wir also: a = Lxxw -> "" a = (w + 5) xxw Geschrieben als: a = w (w + 5) Man sagt uns, dass a = 15m ^ 2 => 15 = w (w +