Antworten:
Erläuterung:
Verwenden Sie die Steigungs-Intercept-Formel, um diese Gleichung zu schreiben.
Die Steigungsschnittform einer linearen Gleichung lautet:
Woher
Das Ersetzen der Steigung und des y-Achsenabschnitts im Problem führt zu:
Welche Aussage beschreibt die Gleichung (x + 5) 2 + 4 (x + 5) + 12 = 0 am besten? Die Gleichung hat eine quadratische Form, da sie mit einer u-Substitution u = (x + 5) als quadratische Gleichung umgeschrieben werden kann. Die Gleichung hat eine quadratische Form, denn wenn sie erweitert wird,
Wie unten erläutert, wird die u-Substitution sie in u als quadratisch beschreiben. Bei Quadrat in x hat seine Expansion die höchste Potenz von x als 2, am besten als quadratisch in x.
Kreis A hat einen Radius von 2 und einen Mittelpunkt von (6, 5). Kreis B hat einen Radius von 3 und einen Mittelpunkt von (2, 4). Wenn der Kreis B mit <1, 1> übersetzt wird, überlappt er den Kreis A? Wenn nicht, wie groß ist der Mindestabstand zwischen den Punkten in beiden Kreisen?
"Kreise überlappen"> "wir müssen hier den Abstand (d)" "zwischen den Zentren mit der Summe der Radien vergleichen." • "Wenn die Summe der Radien"> d "dann überlappen sich die Kreise" • ", wenn die Summe aus Radien "<d", dann keine Überlappung "" vor der Berechnung von d. Wir müssen das neue Zentrum "" von B nach der gegebenen Übersetzung "" unter der Übersetzung "<1,1> (2,4) in (2 + 1) finden. 4 + 1) bis (3,5) larrcolor (rot) "neues Zentrum von B" "um d zu bere
Kreis A hat einen Mittelpunkt bei (-1, -4) und einen Radius von 3. Kreis B hat einen Mittelpunkt bei (-1, 1) und einen Radius von 2. Überschneiden sich die Kreise? Wenn nicht, was ist der kleinste Abstand zwischen ihnen?
Sie überlappen sich nicht. Kleinster Abstand = 0, sie berühren einander. Abstand von Mitte zu Mitte = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) = sqrt ((0) ^ 2 + (- 5) ^ 2) = 5 Summe der Radien = r_a + r_b = 3 + 2 = 5 Gott segne ... ich hoffe die Erklärung ist nützlich.