Antworten:
Lesen Sie unten.
Erläuterung:
glücklich
Erinnere dich daran:
Wir haben:
Beachten Sie, dass dies nur ein theoretisches Ergebnis ist.
Antworten:
#sqrt (9 / pi)
Erläuterung:
Die Formel zum Finden der Fläche eines Kreises ist gegeben durch
A = # pi r ^ 2
Dies impliziert, dass
9 = #pi r ^ 2
r ^ 2 = 9 / pi
r = #sqrt (9 / pi)
Die Höhe eines Kreiszylinders eines gegebenen Volumens variiert umgekehrt wie das Quadrat des Radius der Basis. Um wie viel größer ist der Radius eines Zylinders mit 3 m Höhe als der Radius eines Zylinders mit 6 m Höhe bei gleichem Volumen?
Der Zylinderradius von 3 m Höhe ist 2 mal größer als der von 6 m hohen Zylindern. H_1 = 3 m sei die Höhe und r_1 der Radius des 1. Zylinders. Sei h_2 = 6m die Höhe und r_2 der Radius des 2. Zylinders. Das Volumen der Zylinder ist gleich. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 oder h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 oder (r_1 / r_2) ^ 2 = 2 oder r_1 / r_2 = sqrt2 oder r_1 = sqrt2 * r_2 Der Radius des Zylinders von 3 m hoch ist um das 2-fache höher als das eines 6 m hohen Zylinders [Ans]
Der Radius des größeren Kreises ist doppelt so lang wie der Radius des kleineren Kreises. Die Fläche des Donuts beträgt 75 Pi. Finden Sie den Radius des kleineren (inneren) Kreises.
Der kleinere Radius ist 5. Sei r = der Radius des inneren Kreises. Dann ist der Radius des größeren Kreises 2r. Aus der Referenz erhalten wir die Gleichung für die Fläche eines Annulus: A = pi (R ^ 2-r ^ 2) Ersetzen Sie 2r durch R: A = pi ((2r) ^ 2-r ^ 2) Vereinfachen Sie: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Ersetzen Sie im angegebenen Bereich: 75pi = 3pir ^ 2 Teilen Sie beide Seiten durch 3pi: 25 = r ^ 2 r = 5
Wie groß ist der Umfang eines 15-Zoll-Kreises, wenn der Durchmesser eines Kreises direkt proportional zu seinem Radius ist und ein Kreis mit 2 Zoll Durchmesser einen Umfang von ungefähr 6,28 Zoll hat?
Ich glaube, der erste Teil der Frage sollte sagen, dass der Umfang eines Kreises direkt proportional zu seinem Durchmesser ist. Diese Beziehung ist, wie wir Pi bekommen. Wir kennen den Durchmesser und den Umfang des kleineren Kreises "2 in" bzw. "6,28 in". Um das Verhältnis zwischen Umfang und Durchmesser zu bestimmen, dividieren wir den Umfang durch den Durchmesser "6.28 in" / "2 in" = "3.14", was sehr nach pi aussieht. Nun, da wir den Anteil kennen, können wir den Durchmesser des größeren Kreises multiplizieren, um den Umfang des Kreises zu berechnen.