Wenn wir eine Regressionslinie verwenden, um einen Punkt vorherzusagen, dessen x-Wert außerhalb des Bereichs der x-Werte von Trainingsdaten liegt, wird dies als Extrapolation bezeichnet.
Um (absichtlich) zu extrapolieren, verwenden wir einfach die Regressionslinie, um Werte zu prognostizieren, die weit von Trainingsdaten entfernt sind.
Beachten Sie, dass die Extrapolation keine zuverlässigen Vorhersagen liefert, da die Regressionsgerade außerhalb des Trainingsdatenbereichs möglicherweise nicht gültig ist.
Der erste und der zweite Term einer geometrischen Sequenz sind jeweils der erste und der dritte Term einer linearen Sequenz. Der vierte Term der linearen Sequenz ist 10 und die Summe seiner ersten fünf Term ist 60. Finden Sie die ersten fünf Terme der linearen Sequenz?
{16, 14, 12, 10, 8} Eine typische geometrische Sequenz kann als c_0a, c_0a ^ 2, cdots, c_0a ^ k und eine typische arithmetische Sequenz als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + dargestellt werden kDelta Mit c_0 a als erstem Element für die geometrische Sequenz haben wir {(c_0 a ^ 2 = c_0a + 2Delta -> "Erster und zweiter von GS sind der erste und dritte eines LS"), (c_0a + 3Delta = 10- > "Der vierte Term der linearen Sequenz ist 10"), (5c_0a + 10Delta = 60 -> "Die Summe der ersten fünf Term ist 60"):} Durch Auflösen von c_0, a, Delta erhalten wir c_0 = 64/3 a
Ein Objekt mit einer Masse von 8 kg befindet sich auf einer Rampe mit einer Steigung von pi / 8. Wenn das Objekt mit einer Kraft von 7 N an der Rampe nach oben gedrückt wird, wie hoch ist dann der minimale Haftreibungskoeffizient, damit das Objekt bleiben kann?
Die Gesamtkraft, die entlang der Ebene auf das Objekt nach unten wirkt, ist mg sin ((pi) / 8) = 8 * 9,8 * sin ((pi) / 8) = 30N. Die aufgebrachte Kraft ist entlang der Ebene 7N nach oben. Die Nettokraft auf das Objekt beträgt also 30-7 = 23N entlang der Ebene. Daher sollte eine statische Reibungskraft, die zum Ausgleich dieses Kraftbetrags wirken muss, entlang der Ebene nach oben wirken. Hier ist die statische Reibungskraft, die wirken kann, mu mg cos ((pi) / 8) = 72,42 mN (wobei mu der Koeffizient der statischen Reibungskraft ist). Also 72,42 mu = 23 oder mu = 0,32
Ein Objekt mit einer Masse von 5 kg befindet sich auf einer Rampe mit einer Steigung von pi / 12. Wenn das Objekt mit einer Kraft von 2 N an der Rampe nach oben gedrückt wird, wie hoch ist dann der minimale Haftreibungskoeffizient, damit das Objekt bleiben kann?
Betrachten wir die Gesamtkraft auf das Objekt: 2N die Neigung nach oben. mgsin (pi / 12) ~ 12,68 N nach unten. Daher ist die Gesamtkraft 10,68N nach unten. Nun wird die Reibungskraft als Mumgcostheta angegeben, was sich in diesem Fall auf ~ 47,33 mu N vereinfacht, also mu = 10,68 / 47,33 ~ 0,23. Anmerkung: Wäre da nicht die zusätzliche Kraft gewesen, mu = Tantheta