Antworten:
Der Bereich ist
Erläuterung:
Beachten Sie, dass der Nenner immer undefiniert ist
oder
Wie
Zum
Wir erhalten eine Folge von Intervallen, in denen
Wir stellen fest, dass der kleinste positive Wert erhalten wird, wenn der Nenner eingegeben wird
Der größte negative Wert wird ähnlich gefunden
Aufgrund der Kontinuität von
Die harten Klammern bedeuten, dass die Anzahl in dem Intervall enthalten ist (z. B.
Graph {1 / (4sin (x) + 2) -10, 10, -5, 5}
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Was sind der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion y = x ^ (2) -2x-15?
Koordinate des Scheitelpunkts: x = -b / 2a = 2/2 = 1 y = f (1) = -16 Symmetrieachse: x = 1 Minimaler Wert von y: -16 Domäne von x: -Unendlichkeit bis + Unendlichkeit Bereich: - 16 bis + unendlich.
Welches sind die Eigenschaften des Graphen der Funktion f (x) = (x + 1) ^ 2 + 2? Zutreffendes bitte ankreuzen. Die Domain besteht aus reellen Zahlen. Der Bereich ist alle reellen Zahlen größer oder gleich 1. Der y-Achsenabschnitt ist 3. Der Graph der Funktion ist 1 Einheit höher und
Erster und dritter sind wahr, zweiter ist falsch, vierter ist unvollendet. - Die Domain besteht in der Tat aus reellen Zahlen. Sie können diese Funktion als x ^ 2 + 2x + 3 umschreiben, was ein Polynom ist, und daher die Domäne mathbb {R} hat. Der Bereich ist nicht alle reelle Zahl größer oder gleich 1, da das Minimum 2 ist Tatsache. (x + 1) ^ 2 ist eine horizontale Translation (eine Einheit links) der "strandard" -Parabel x ^ 2, die den Bereich [0, infty] hat. Wenn Sie 2 hinzufügen, verschieben Sie den Graphen vertikal um zwei Einheiten, sodass der Bereich [2, infty) ist. Um den y-Achsena