Antworten:
Erläuterung:
Nun, während wir einen Versuch unternehmen, um dieses Problem zu lösen, können wir sagen, dass anfangs reines Walzen nur wegen stattgefunden hat
Als die Kollision stattfand, nahm ihre lineare Geschwindigkeit ab, aber während der Kollision gab es keine Änderung
Nun, gegeben, ist der Restitutionskoeffizient
So wird neue Winkelgeschwindigkeit
Nun, äußeres Drehmoment aufgrund der Reibungskraft,
So,
so,
Und wenn wir die lineare Kraft betrachten, bekommen wir
so,
Nun lass mal nach
und nach der Zeit
Für reine rollende Bewegung
Setzen Sie die Werte von
Eine Kugel mit einer Masse von 3 kg rollt mit 3 m / s und kollidiert elastisch mit einer ruhenden Kugel mit einer Masse von 1 kg. Wie sind die Geschwindigkeiten der Kugeln nach dem Zusammenstoß?
Gleichungen der Energie- und Impulserhaltung. u_1 '= 1.5m / s u_2' = 4.5m / s Wie von wikipedia vorgeschlagen: u_1 '= (m_1 - m_2) / (m_1 + m_2) * u_1 + (2m_2) / (m_1 + m_2) * u_2 = = (3- 1) / (3 + 1) * 3 + (2 * 1) / (3 + 1) * 0 = = 2/4 * 3 = 1,5 m / s u_2 '= (m_2-m_1) / (m_1 + m_2) * u_2 + (2m_1) / (m_1 + m_2) * u_1 = = (1-3) / (3 + 1) * 0 + (2 * 3) / (3 + 1) * 3 = = -2 / 4 * 0 + 6/4 * 3 = 4,5m / s [Quelle der Gleichungen] Ableitung Impulserhaltung und Energiezustand: Impuls P_1 + P_2 = P_1 '+ P_2' Da der Impuls gleich P = m * u m_1 * u_1 + m_2 * ist u_2 = m_1 * u_1 '+ m_2 * u_2' - - (1) Ene
Eine Kugel mit einer Masse von 2 kg rollt mit 9 m / s und kollidiert elastisch mit einer ruhenden Kugel mit einer Masse von 1 kg. Wie sind die Geschwindigkeiten der Kugeln nach dem Zusammenstoß?
Kein Abbruch (v_1 = 3 m / s) Kein Abbruch (v_2 = 12 m / s) Die Geschwindigkeit nach der Kollision der beiden Objekte wird unten erläutert: Farbe (rot) (v'_1 = 2,64 m / s, v ' _2 = 12,72 m / s) "Verwenden Sie das Gespräch des Impulses" 2 * 9 + 0 = 2 * v_1 + 1 * v_2 18 = 2 * v_1 + v_2 9 + v_1 = 0 + v_2 v_2 = 9 + v_1 18 = 2 * v_1 + 9 + v_1 18-9 = 3 * v_1 9 = 3 * v_1 v_1 = 3 m / s v_2 = 9 + 3 v_2 = 12 m / s Da es zwei Unbekannte gibt, bin ich mir nicht sicher, wie Sie das oben genannte lösen können ohne Gebrauch, Impulserhaltung und Energieerhaltung (elastische Kollision). Die Kombination
Eine Kugel mit einer Masse von 5 kg rollt mit 3 m / s und kollidiert elastisch mit einer ruhenden Kugel mit einer Masse von 2 kg. Wie sind die Geschwindigkeiten der Kugeln nach dem Zusammenstoß?
V_1 = 9/7 m / s v_2 = 30/7 m / s 5 * 3 + 0 = 5 * v_1 + 2 * v_2 15 = 5 * v_1 + 2 * v_2 "(1) 3 + v_1 = 0 + v_2 "(2)" color (red) "" die Summe der Geschwindigkeiten von Objekten vor und nach der Kollision muss gleich sein "" "schreibe" v_2 = 3 + v_1 "bei (1)" 15 = 5 * v_1 + 2 * ( 3 + v_1) 15 = 5.v_1 + 6 + 2 * v_1 15-6 = 7 * v_1 9 = 7 * v_1 v_1 = 9/7 m / s verwenden: "(2)" 3 + 9/7 = v_2 v_2 = 30/7 m / s