Antworten:
Ein Mythos ist eine lange Erzählung über Helden und ihre gewagten Quests.
Eine Legende dagegen erzählt, wie etwas entstanden ist.
Erläuterung:
Quelle: Mein Englischlehrer.
Mythos ist viel länger als Legenden und hat folglich mehr Charaktere. Oft sind diese Mythen miteinander verbunden und bilden eine "Mythologie". Wie die griechische Mythologie oder die ägyptische Mythologie. Meist handelt es sich dabei um Götter und um Interaktionen mit dem Menschen, die sich jedoch auf einen "Helden" konzentrieren.
Legenden sind kürzer. Es kann sich um die Schaffung von allem handeln: von Bergen, Meeren bis zu Früchten. Oder vielleicht sogar die Legende einer "Tradition" oder eines Ortes.
Denken Sie daran, Mythen handeln von Menschen oder Gottheiten. Legenden handeln von Dingen.
Das Volumen der kubischen Form und die Fläche eines Quadrats sind gleich 64. Ein Student wird gebeten, die Kosten einer Begrenzung eines rechteckigen Feldes zu ermitteln, dessen Länge die Seite des Würfels und die Breite die Seite des Quadrats ist, wenn die Kosten 15 R betragen Einheit?
Farbe (violett) ("Grenzkosten" = (2 * l + 2 * b) * 15 = Rs 360 "/ =" Vol. des Würfels V_c = 64 oder Seite "a_c = Wurzel 3 64 = 4" Fläche des Quadrats "A_s = 64" oder Seite "a_s = sqrt 64 = 8" Nun hat das rechteckige Feld die Länge l = 8, die Breite b = 4 "Kosten der Grenze" = (2 l + 2 b) * " pro Einheit "Farbe (violett) (" Grenzkosten "= (2 * 8 + 2 * 4) * 15 = Rs 360" / = "
Der Graph von h (x) wird angezeigt. Das Diagramm scheint kontinuierlich zu sein, wo sich die Definition ändert. Zeigen Sie, dass h tatsächlich kontinuierlich ist, indem Sie die linken und rechten Grenzen finden und zeigen, dass die Definition der Kontinuität erfüllt ist.
Bitte beachten Sie die Erklärung. Um zu zeigen, dass h stetig ist, müssen wir seine Kontinuität bei x = 3 überprüfen. Wir wissen, dass h. bei x = 3, wenn und nur dann, wenn lim_ (x bis 3-) h (x) = h (3) = lim_ (x bis 3+) h (x) ............ ................... (ast). Als x bis 3, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x bis 3-) h (x) = lim_ (x bis 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x bis 3-) h (x) = 4 ............................................ .......... (ast ^ 1). In ähnlicher Weise ist lim_ (x zu 3+) h (x) = lim_ (x zu 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_
Zwei parallele Akkorde eines Kreises mit Längen von 8 und 10 dienen als Basis eines in den Kreis eingeschriebenen Trapezes. Wenn die Länge eines Kreisradius 12 ist, wie groß ist die Fläche eines solchen beschriebenen Trapezes?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 und 2 Schematisch könnten wir ein Parallelogramm ABCD in einem Kreis einfügen, und unter der Bedingung, dass die Seiten AB und CD Akkorde der Kreise sind, entweder in Abbildung 1 oder in Abbildung 2. Die Bedingung, dass die Seiten AB und CD sein müssen Akkorde des Kreises implizieren, dass das eingeschriebene Trapez ein gleichschenkliges Trapez sein muss, da die Diagonalen des Trapezoids (AC und CD) gleich sind, weil A hat BD = B hat AC = B hatD C = A hat CD und die Linie senkrecht zu AB und CD durch das Zentrum E halbiert diese Akkorde (dies bedeutet, dass AF = B