Sie haben insgesamt 21 Münzen, alles Nickel und Dime. Der Gesamtwert beträgt 1,70 $. Wie viele Nickel und wie viele Dimen hast du?

Sie haben insgesamt 21 Münzen, alles Nickel und Dime. Der Gesamtwert beträgt 1,70 $. Wie viele Nickel und wie viele Dimen hast du?
Anonim

Antworten:

Die Anzahl der Nickel ist #8# und die Anzahl der Groschen ist #13#.

Erläuterung:

Darstellung der Nickels als # n # und die Dimen als # d #und zu wissen, dass ein Nickel ist #5# Cent und ein Cent ist #10# Cent können wir zwei Gleichungen aus den gegebenen Daten schreiben.

  1. # n + d = 21 #
  2. # 5n + 10d = 170 #

Wir verwenden die erste Gleichung, um einen Wert für abzuleiten # n #.

# n + d = 21 #

Subtrahieren # d # von jeder Seite.

# n + d-d = 21-d #

# n = 21-d #

Wir vereinfachen nun die zweite Gleichung, indem wir alle Ausdrücke durch teilen #5#.

# 5n + 10d = 170 #

# (5n) / 5 + (10d) / 5 = 170/5 #

# (1Cancel5n) / (1Cancel5) + (2Cancel10d) / 5 = (34Cancel170) / (1Cancel5) #

# n + 2d = 34 #

Verwenden Sie den Wert für # n # aus der ersten Gleichung ersetzen # n # mit #Farbe (rot) ((21-d)) # in der vereinfachten zweiten Gleichung.

# n + 2d = 34 #

#Farbe (rot) ((21-d)) + 2d = 34 #

Klammern öffnen und vereinfachen.

# 21-d + 2d = 34 #

# 21 + d = 34 #

Subtrahieren #21# von jeder Seite.

# 21-21 + d = 34-21 #

# d = 13 #

Ersetzen Sie in der ersten Gleichung # d # mit #Farbe (blau) (13) #.

# n + d = 21 #

# n + Farbe (blau) 13 = 21 #

Subtrahieren #13# von jeder Seite.

# n + 13-13 = 21-13 #

# n = 8 #

Somit ist die Anzahl der Nickels #8# und die Anzahl der Groschen ist #13#.