Lass die Koordinate von
Also wenn
Nun, Mittelpunkt von
klar wird dieser Punkt liegen
So,
oder,
Und das wird auch am liegen
so,
oder,
Die Koordinate ist also
Sei P (x_1, y_1) ein Punkt und sei l die Linie mit Gleichung ax + durch + c = 0.Die Entfernung d von P-> l ist gegeben durch: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Bestimmen Sie den Abstand d des Punktes P (6,7) von der Linie l mit der Gleichung 3x + 4y = 11?
D = 7 Sei l-> a x + b y + c = 0 und p_1 = (x_1, y_1) ein Punkt, der nicht auf l liegt. Angenommen, b ne 0 und der Aufruf von d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2, nachdem y = - (a x + c) / b in d ^ 2 eingesetzt wurde, haben wir d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Der nächste Schritt ist das d ^ 2-Minimum in Bezug auf x zu finden, sodass wir x so finden werden, dass d / (dx) (d ^ 2) = 2 (x - x_1) - (2a ((c + ax)) / b + y_1 ist )) / b = 0. Dies tritt für x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) auf. Nun, indem wir diesen Wert in d ^ 2 einsetzen, erhalten wir d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a
Ein Objekt befindet sich bei (6, 7, 2) im Ruhezustand und beschleunigt konstant mit einer Geschwindigkeit von 4/3 m / s ^ 2, wenn es sich zu Punkt B bewegt. Wenn sich Punkt B bei (3, 1, 4) befindet, wie lange dauert es, bis das Objekt den Punkt B erreicht? Angenommen, alle Koordinaten sind in Metern.
T = 3.24 Sie können die Formel verwenden s = ut + 1/2 (bei ^ 2) u ist die Anfangsgeschwindigkeit s ist die zurückgelegte Entfernung t ist die Zeit a ist die Beschleunigung Nun beginnt sie mit dem Ruhezustand, so dass die Anfangsgeschwindigkeit 0 s = 1/2 ist (at ^ 2) Um s zwischen (6,7,2) und (3,1,4) zu finden, verwenden wir die Abstandsformel s = sqrt ((6-3) ^ 2 + (7-1) ^ 2 + (2) -4) ^ 2) s = sqrt (9 + 36 + 4) s = 7 Die Beschleunigung beträgt 4/3 Meter pro Sekunde pro Sekunde 7 = 1/2 ((4/3) t ^ 2) 14 * (3/4) ) = t ^ 2 t = sqrt (10,5) = 3,24
Wie groß ist die Beschleunigung des Blocks, wenn er sich am Punkt x = 0,24 m, y = 0,52 m befindet? Was ist die Richtung der Beschleunigung des Blocks, wenn er sich am Punkt x = 0,24 m, y = 0,52 m befindet? (Siehe Einzelheiten).
Da x und y orthogonal zueinander sind, können diese unabhängig voneinander behandelt werden. Wir wissen auch, dass vecF = -gradU: .x-Komponente der zweidimensionalen Kraft F_x = - (delU) / (delx) ist. F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2 ( 3.65 Jm ^ -3) y ^ 3] F_x = -11.80x x-Komponente der Beschleunigung F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At der gewünschte Punkt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 In ähnlicher Weise ist die y-Kraftkomponente F_y = -del / (dely) [(5,90 Jm ^ -2) x ^ 2 - (3,65 Jm) ^ -3) y ^ 3] F_y = 10,95y ^ 2 y-Komponente der Bes