
Antworten:
Erläuterung:
Die Frage in die mathematische Symbologie stellen:
Finden wir zuerst perfekte Quadrate innerhalb der Quadratwurzeln:
Ich sehe keine Möglichkeiten zur weiteren Vereinfachung, daher ist dies unsere Antwort.
Was ist 13 Wurzel 3 - 4 Wurzel 48 in radikaler Form?

Wenn die Frage die Vereinfachung dieses Ausdrucks sein soll: 13sqrt (3) - 4sqrt (48) Dann sehen Sie sich einen Lösungsprozess unten an: Schreiben Sie zuerst das Radikal auf der rechten Seite wie folgt: 13sqrt (3) - 4sqrt (16 * 3) Nun verwenden Sie dies Radikalregel zur Vereinfachung des Begriffs auf der rechten Seite: sqrt (Farbe (rot) (a) * Farbe (blau) (b)) = sqrt (Farbe (rot) (a)) * sqrt (Farbe (blau) (b) ) 13 Quadratmeter (3) - 4 Quadratmeter (Farbe (Rot) (16) * Farbe (Blau) (3)) => 13 Quadratmeter (3) - 4 Quadratmeter (Farbe (Rot) (16)) Quadrat (Farbe (Blau) (3) ) => 13sqrt (3) - (4 * 4sqrt (Farbe (blau) (3
Was ist die Wurzel aus 20 - Wurzel aus 45 + 2 Wurzel aus 125?

Sqrt (20) -sqrt (45) + 2sqrt (125) = 9sqrt (5) Verwenden Sie die Primfaktorisierung, um das Finden der perfekten Quadrate zu erleichtern, die aus dem Radikalzeichen entnommen werden können. Quadrat (20) - Quadrat (45) + 2 Quadrat (125) kann wie folgt faktorisiert werden: Quadrat (2 * 2 * 5) - Quadrat (3 * 3 * 5) + 2 Quadrat (5 * 5 * 5) vervollständigen Sie die Quadrate und vereinfachen Sie sie: sqrt (2 ^ 2 * 5) -sqrt (3 ^ 2 * 5) + 2sqrt (5 ^ 3) = 2sqrt (5) -3sqrt (5) + 2 * 5sqrt (5) Zum Schluss die Begriffe zusammen, um die Lösung zu erhalten: 2sqrt (5) -3sqrt (5) + 10sqrt (5) = 9sqrt (5)
Wurzel unter M + Wurzel unter N - Wurzel unter P ist gleich Null, dann beweisen Sie, dass M + N-Pand gleich 4mn ist.

M + np = 2sqrt (mn) -Farbe (weiß) (xxx) ul ("und nicht") 4mn Da sqrtm + sqrtn-sqrtp = 0, dann sqrtm + sqrtn = sqrtp und quadrieren, erhalten wir m + n-2sqrt ( mn) = p oder m + np = 2sqrt (mn)