Antworten:
Y sei die Höhe und x der Radius.
Erläuterung:
Die Oberfläche eines Zylinders ist gegeben durch
Der Radius r beträgt 28 cm.
Deshalb,
Das Volumen eines Zylinders ist mit angegeben
Hoffentlich hilft das!
Die Höhe eines Kreiszylinders eines gegebenen Volumens variiert umgekehrt wie das Quadrat des Radius der Basis. Um wie viel größer ist der Radius eines Zylinders mit 3 m Höhe als der Radius eines Zylinders mit 6 m Höhe bei gleichem Volumen?
Der Zylinderradius von 3 m Höhe ist 2 mal größer als der von 6 m hohen Zylindern. H_1 = 3 m sei die Höhe und r_1 der Radius des 1. Zylinders. Sei h_2 = 6m die Höhe und r_2 der Radius des 2. Zylinders. Das Volumen der Zylinder ist gleich. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 oder h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 oder (r_1 / r_2) ^ 2 = 2 oder r_1 / r_2 = sqrt2 oder r_1 = sqrt2 * r_2 Der Radius des Zylinders von 3 m hoch ist um das 2-fache höher als das eines 6 m hohen Zylinders [Ans]
Das Volumen eines Zylinders mit fester Höhe variiert direkt proportional zum Quadrat des Basisradius. Wie finden Sie die Volumenänderung, wenn der Basisradius um 18% erhöht wird?
Das Volumen steigt um 39,24%. Wenn sich das Volumen eines Zylinders, z. B. V, der festen Höhe in direktem Verhältnis zum Quadrat des Basisradius, z. B. r, ändert, können wir die Beziehung als Vpropr ^ 2 schreiben und wenn r um 18% erhöht wird. dh sie steigt von r auf 118 / 100r oder 1,18r an, das Volumen wird um (1,18r) ^ 2 = 1,3924r ^ 2 und damit das Volumen um 39,24% erhöht.
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3