Antworten:
Es gibt unendlich viele parabolische Gleichungen, die die gegebenen Anforderungen erfüllen.
Wenn wir die Parabel auf eine vertikale Symmetrieachse beschränken, dann:
Erläuterung:
Für eine Parabel mit einer vertikalen Symmetrieachsedie allgemeine Form der Parabelgleichung mit Scheitelpunkt bei
Ersetzen der angegebenen Scheitelpunktwerte
und wenn
und die parabolische Gleichung ist
Graph {y = -12 / 25 * x ^ 2 + 8 -14.21, 14.26, -5.61, 8.63}
Jedoch (zum Beispiel) mit einer horizontalen Symmetrieachse:
erfüllt auch die gegebenen Bedingungen:
Graph {x = 5/144 (y-8) ^ 2 -17,96, 39,76, -8,1, 20,78}
Jede andere Wahl für die Steigung der Symmetrieachse gibt Ihnen eine andere Gleichung.
Wie lautet die Gleichung der Parabel, die einen Scheitelpunkt bei (0, 0) hat und durch den Punkt (-1, -64) verläuft?
F (x) = - 64x ^ 2 Wenn der Scheitelpunkt bei (0 | 0) ist, f (x) = ax ^ 2 Nun werden wir den Punkt (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Wie lautet die Gleichung der Parabel, die einen Scheitelpunkt bei (0, 0) hat und durch den Punkt (-1, -4) verläuft?
Y = -4x ^ 2> "ist die Gleichung einer Parabel in" Farbe (blau) "Scheitelpunktform". • Farbe (weiß) (x) y = a (xh) ^ 2 + k "wobei" (h, k) "die Koordinaten des Scheitelpunkts sind und" "ein Multiplikator" "hier" (h, k) = ist (0,0) "also" y = ax ^ 2 ", um einen Ersatz" (-1, -4) "in die Gleichung zu finden" -4 = ay = -4x ^ 2larrcolor (blau) "Gleichung der Parabel" { -4x ^ 2 [-10, 10, -5, 5]}
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo