Antworten:
Sehen Sie unten einen Lösungsprozess:
Erläuterung:
Rufen wir die erste Zimmernummer an
Dann können wir, da sie fortlaufend sind, sogar Nummern, die zweite Zimmernummer anrufen
Ihre Summe zu kennen ist
Ob
Die zwei Zimmernummern sind
Die Zahlen auf drei Verlosungskarten sind aufeinanderfolgende ganze Zahlen mit einer Summe von 7530. Wie viele Zahlen sind die Zahlen?
2509 ";" 2510 ";" 2511 Die erste Zahl sei n. Dann sind die nächsten zwei Zahlen: "n + 1"; "n + 2. So n + n + 1 + n + 2 = 7530. 3n + 3 = 7530 3 von beiden Seiten abziehen 3n + 3-3 = 7530-3 aber + 3-3 = 0 3n = 7527 beide Seiten durch 3 teilen 3 / 3xxn = 7527/3 aber 3/3 = 1 n = 2509 '~~~~ ~~~~~~~~~~~~~~~~~~ Prüfung 3 (2509) + 3 + = 7530
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
"Lena hat 2 aufeinanderfolgende Ganzzahlen.Sie bemerkt, dass ihre Summe der Differenz zwischen ihren Quadraten entspricht. Lena wählt zwei weitere aufeinanderfolgende Ganzzahlen aus und bemerkt dasselbe. Beweisen Sie algebraisch, dass dies für zwei aufeinanderfolgende ganze Zahlen gilt.
Bitte beziehen Sie sich auf die Erklärung. Es sei daran erinnert, dass die aufeinanderfolgenden ganzen Zahlen sich um 1 unterscheiden. Wenn m eine ganze Zahl ist, muss die nachfolgende ganze Zahl also n + 1 sein. Die Summe dieser zwei ganzen Zahlen ist n + (n + 1) = 2n + 1. Der Unterschied zwischen ihren Quadraten ist (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, je nach Wunsch! Fühle die Freude an Mathe!