Antworten:
13 cm und 17 cm
Erläuterung:
Die Abmessungen eines Fernsehbildschirms sind so, dass die Breite 4 Zoll kleiner ist als die Länge. Wenn die Länge des Bildschirms um einen Zoll vergrößert wird, vergrößert sich der Bildschirmbereich um 8 Quadratzoll. Was sind die Abmessungen des Bildschirms?
Länge x Breite = 12 x 8 Sei die Breite des Bildschirms = x Länge = x + 4 Fläche = x (x + 4) Nun zum Problem: (x + 4 + 1) x = x (x + 4) +8 x (x + 5) = x ^ 2 + 4x + 8 x ^ 2 + 5x = x ^ 2 + 4x + 8 x = 8 subtrahiere x ^ 2, 4x von beiden Seiten
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?
Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7
Ursprünglich waren die Abmessungen eines Rechtecks 20 x 23 cm. Wenn beide Dimensionen um den gleichen Betrag verringert wurden, nahm die Fläche des Rechtecks um 120 cm² ab. Wie finden Sie die Abmessungen des neuen Rechtecks?
Die neuen Abmessungen sind: a = 17 b = 20 Originalbereich: S_1 = 20xx23 = 460 cm ^ 2 Neuer Bereich: S_2 = 460-120 = 340cm ^ 2 (20-x) xx (23-x) = 340 460-20x- 23x + x ^ 2 = 340 x ^ 2-43x + 120 = 0 Lösung der quadratischen Gleichung: x_1 = 40 (entladen, weil höher als 20 und 23 ist) x_2 = 3 Die neuen Dimensionen sind: a = 20-3 = 17 b = 23-3 = 20