Antworten:
Erläuterung:
Wie
Beachten Sie, dass bei zwei Punkten und bei Punkten nur eine Linie durchlaufen werden kann
und damit die durchlaufende Gleichung der Linie
oder
oder
oder
Sei f (x) = x-1. 1) Stellen Sie sicher, dass f (x) weder gerade noch ungerade ist. 2) Kann f (x) als Summe einer geraden und einer ungeraden Funktion geschrieben werden? a) Wenn ja, zeigen Sie eine Lösung. Gibt es mehr Lösungen? b) Falls nicht, beweisen Sie, dass dies unmöglich ist.
Sei f (x) = | x -1 |. Wenn f gerade wäre, dann wäre f (-x) für alle x gleich f (x). Wenn f ungerade wäre, dann wäre f (-x) für alle x -f (x). Beachten Sie, dass für x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Da 0 nicht gleich 2 oder -2 ist, ist f weder gerade noch ungerade. Könnte f als g (x) + h (x) geschrieben werden, wobei g gerade ist und h ungerade ist? Wenn das wahr wäre, dann g (x) + h (x) = | x - 1 |. Rufen Sie diese Anweisung auf 1. Ersetzen Sie x durch -x. g (-x) + h (-x) = | -x - 1 | Da g gerade ist und h ungerade ist, haben wir: g (x) - h (x) = | -x - 1 | Nennen Sie
Zwei Würfel haben jeweils die Eigenschaft, dass eine 2 oder eine 4 dreimal so häufig erscheint wie eine 1, 3, 5 oder 6 bei jedem Wurf. Wie groß ist die Wahrscheinlichkeit, dass eine 7 die Summe ist, wenn die zwei Würfel gewürfelt werden?
Die Wahrscheinlichkeit, dass Sie eine 7 würfeln, beträgt 0,14. Sei x gleich der Wahrscheinlichkeit, dass du eine 1 würfst. Dies ist die gleiche Wahrscheinlichkeit wie beim Würfeln von 3, 5 oder 6. Die Wahrscheinlichkeit, eine 2 oder eine 4 zu würfeln, ist 3x. Wir wissen, dass sich diese Wahrscheinlichkeiten zu Eins addieren müssen. Die Wahrscheinlichkeit, eine 1 zu würfeln, + die Wahrscheinlichkeit, eine 2 zu würfeln, + die Wahrscheinlichkeit, eine 3 zu würfeln, + die Wahrscheinlichkeit, eine 4 zu rollen, + die Wahrscheinlichkeit, eine 5 zu rollen, + die Wahrscheinlichkeit des R
Sei f (x) = 3x + 1 mit f: R -> R. Finde eine lineare Funktion h: R -> R, so dass h (f (x)) = 6x - 1 ist.
H (x) = 2x-3> "da" h (x) "eine lineare Funktion ist, lassen Sie h (x) = ax + b rArrh (f (x)) = a (3x + 1) + b Farbe (weiß) (rArrh (f (x))) = 3ax + a + b. "jetzt" h (f (x)) = 6x-1 rArr3ax + a + b = 6x-1 Farbe (blau) "Vergleichskoeffizienten von gleiche Ausdrücke "rArr3a = 6rArra = 2 a + b = -1rArr2 + b = -1rArrb = -3 rArrh (x) = ax + b = 2x-3