Antworten:
Erläuterung:
Die Standardform eines Kreises mit einem Mittelpunkt bei
# (x-h) ^ 2 + (y-k) ^ 2 = r ^ 2 #
Da ist das Zentrum
# {(h = 0), (k = 0), (r = 7):} #
Die Gleichung des Kreises lautet also
# (x-0) ^ 2 + (y-0) ^ 2 = 7 ^ 2 #
Dies vereinfacht sich zu sein
# x ^ 2 + y ^ 2 = 49 #
Graph {(x ^ 2 + y ^ 2-49) = 0 -16,02, 16,03, -8,01, 8,01}
Kreis A hat einen Radius von 2 und einen Mittelpunkt von (6, 5). Kreis B hat einen Radius von 3 und einen Mittelpunkt von (2, 4). Wenn der Kreis B mit <1, 1> übersetzt wird, überlappt er den Kreis A? Wenn nicht, wie groß ist der Mindestabstand zwischen den Punkten in beiden Kreisen?
"Kreise überlappen"> "wir müssen hier den Abstand (d)" "zwischen den Zentren mit der Summe der Radien vergleichen." • "Wenn die Summe der Radien"> d "dann überlappen sich die Kreise" • ", wenn die Summe aus Radien "<d", dann keine Überlappung "" vor der Berechnung von d. Wir müssen das neue Zentrum "" von B nach der gegebenen Übersetzung "" unter der Übersetzung "<1,1> (2,4) in (2 + 1) finden. 4 + 1) bis (3,5) larrcolor (rot) "neues Zentrum von B" "um d zu bere
Kreis A hat ein Zentrum bei (5, -2) und einen Radius von 2. Kreis B hat einen Mittelpunkt bei (2, -1) und einen Radius von 3. Überschneiden sich die Kreise? Wenn nicht, was ist der kleinste Abstand zwischen ihnen?
Ja, die Kreise überlappen sich. Berechnen Sie den Abstand von Mitte zu Mitte. Lassen Sie P_2 (x_2, y_2) = (5, -2) und P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3.16 Berechnen Sie die Summe von den Radien r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d Die Kreise überlappen sich mit Gott segnen .... Ich hoffe, die Erklärung ist nützlich.
Kreis A hat einen Mittelpunkt bei (-1, -4) und einen Radius von 3. Kreis B hat einen Mittelpunkt bei (-1, 1) und einen Radius von 2. Überschneiden sich die Kreise? Wenn nicht, was ist der kleinste Abstand zwischen ihnen?
Sie überlappen sich nicht. Kleinster Abstand = 0, sie berühren einander. Abstand von Mitte zu Mitte = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) = sqrt ((0) ^ 2 + (- 5) ^ 2) = 5 Summe der Radien = r_a + r_b = 3 + 2 = 5 Gott segne ... ich hoffe die Erklärung ist nützlich.