Antworten:
Die Hauptantriebskraft ist, dass wir nicht die Quadratwurzel einer negativen Zahl im reellen Zahlensystem nehmen können.
Erläuterung:
Wir müssen also die kleinste Zahl finden, die wir als Quadratwurzel nehmen können, die sich noch im reellen Zahlensystem befindet, was natürlich Null ist.
Also müssen wir die Gleichung lösen
Das ist natürlich so
Das ist also der kleinste zulässige x-Wert, also die Untergrenze Ihrer Domain. Es gibt keinen maximalen x-Wert, daher ist die Obergrenze Ihrer Domain positiv unendlich.
So
Der Mindestwert für Ihren Bereich ist Null, da
Es gibt also keinen Maximalwert für Ihren Bereich
Die Kosten für die Stifte variieren direkt mit der Anzahl der Stifte. Ein Stift kostet 2,00 $. Wie finden Sie k in der Gleichung für die Kosten für Stifte, verwenden Sie C = kp, und wie finden Sie die Gesamtkosten von 12 Stiften?
Die Gesamtkosten für 12 Stifte betragen 24 US-Dollar. C prop p:. C = k * p; C = 2,00, p = 1:. 2 = k * 1:. k = 2:. C = 2p {k ist konstant] p = 12, C =? C = 2 * p = 2 * 12 = 24,00 $ Die Gesamtkosten von 12 Pens betragen 24,00 $. [ANS]
Wenn die Funktion f (x) eine Domäne von -2 <= x <= 8 und einen Bereich von -4 <= y <= 6 hat und die Funktion g (x) durch die Formel g (x) = 5f ( 2x)) was sind dann die Domäne und der Bereich von g?
Unten. Verwenden Sie grundlegende Funktionsumwandlungen, um die neue Domäne und den neuen Bereich zu finden. 5f (x) bedeutet, dass die Funktion um einen Faktor fünf vertikal gedehnt wird. Daher umfasst der neue Bereich ein Intervall, das fünfmal größer ist als das ursprüngliche. Im Falle von f (2x) wird die Funktion um einen Faktor von einer halben Hälfte gedehnt. Daher werden die Extremitäten der Domäne halbiert. Et voilà!
Wie finden Sie die Domäne und den Bereich und bestimmen Sie, ob die Relation eine Funktion ist, die {(0, -1.1), (2, -3), (1.4,2), (-3.6,8)} lautet?
Domäne: {0, 2, 1.4, -3.6} Bereich: {-1.1, -3, 2, 8} Beziehung einer Funktion? ja Die Domäne ist die Menge aller angegebenen x-Werte. Die x-Koordinate ist der erste Wert, der in einem geordneten Paar aufgeführt ist. Der Bereich ist die Menge aller angegebenen y-Werte. Die y-Koordinate ist der letzte in einem geordneten Paar aufgelistete Wert. Die Relation ist eine Funktion, da jeder x-Wert genau einem eindeutigen y-Wert zugeordnet wird.