Was ist die Quadratwurzel von 625 in radikaler Form vereinfacht?

Was ist die Quadratwurzel von 625 in radikaler Form vereinfacht?
Anonim

Antworten:

25

Erläuterung:

# sqrt625 = sqrt (25 * 25) = sqrt (25 ^ 2) = 25 #

Vergessen wir auch nicht, dass -25 auch funktioniert!

# sqrt625 = + -25 #

Antworten:

#sqrt (625) = + - 25 #

Wenn kein Taschenrechner zur Hand ist, lohnt es sich immer, diese Art von Trick auszuprobieren

Erläuterung:

Betrachten Sie die letzte Ziffer von 625

Das ist 5. Also die erste Frage ist, wie oft sich die letzte Ziffer von 5 ergibt.

Das wusste ich # 5xx5 = 25 # Geben Sie uns die letzte Ziffer so 5 ist a #ul ("Potenzial") # Teil der Lösung

Betrachten Sie die Hunderte, dh 600

# 10xx10 = 100 <600 #

# 20xx20 = 2xx200 = 400 <600 #

# 30xx30 = 3xx300 = 900> 600 Farbe (rot) ("Nicht als zu groß") #

Wenn wir dies zusammenstellen, können wir testen # 25xx25 #

# = (20 + 5) xx25 = 500 + 125 = 625 # nach Bedarf

Jedoch: #Farbe (grün) ((+ 25) xx (+25)) Farbe (blau) (= (- 25) xx (-25)) Farbe (Magenta) (= + 625) #

So #sqrt (625) = + - 25 #

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color (blau) ("zusätzlicher Kommentar") #

Wenn alles andere fehlschlägt und Sie keinen Taschenrechner zur Hand haben, erstellen Sie einen Primfaktor-Baum.

Daraus folgt, dass wir haben # 5 ^ 2xx5 ^ 2-> 25xx25 #

So #sqrt (625) -> sqrt (25 ^ 2) = + - 25 #