Antworten:
Ersetzen Sie f (x) für jedes x und vereinfachen Sie es dann.
Erläuterung:
Gegeben:
Ersetzen Sie f (x) für jedes x
Zähler und Nenner mit 1 in Form von multiplizieren
Das bedeutet, dass
Die binäre Operation ist definiert als a + b = ab + (a + b), wobei a und b zwei beliebige reelle Zahlen sind.Der Wert des Identitätselements dieser Operation, definiert als Zahl x, so dass a x = a für ein beliebiges a ist?
X = 0 Wenn ein Quadrat x = a ist, dann gilt ax + a + x = a oder (a + 1) x = 0 Wenn dies für alle a eintritt, dann ist x = 0
Die Funktion für die Materialkosten für ein Hemd ist f (x) = 5 / 6x + 5, wobei x die Anzahl der Hemden ist. Die Funktion für den Verkaufspreis dieser Hemden ist g (f (x)), wobei g (x) = 5x + 6 ist. Wie finden Sie den Verkaufspreis von 18 Hemden?
Die Antwort ist g (f (18)) = 106 Wenn f (x) = 5 / 6x + 5 und g (x) = 5x + 6 Dann g (f (x)) = g (5 / 6x + 5) = 5 (5 / 6x + 5) +6 Vereinfachung von g (f (x)) = 25 / 6x + 25 + 6 = 25 / 6x + 31 Wenn x = 18 Dann ist g (f (18)) = 25/6 * 18 + 31 = 25 * 3 + 31 = 75 + 31 = 106
Sei [(x_ (11), x_ (12)), (x_21, x_22)] als ein Objekt definiert, das als Matrix bezeichnet wird. Die Determinante einer Matrix ist definiert als [(x_ (11) xxx_ (22)) - (x_21, x_12)]. Wenn nun M [(- 1,2), (-3, -5)] und N = [(- 6,4), (2, -4)] ist, was ist die Determinante von M + N & MxxN?
Determinante von ist M + N = 69 und die von MXN = 200ko Man muss auch die Summe und das Produkt der Matrizen definieren. Es wird jedoch davon ausgegangen, dass sie genau so sind, wie sie in Lehrbüchern für die 2xx2-Matrix definiert sind. M + N = [(- 1,2), (- 3, -5)] + [(- 6,4), (2, -4)] = [(- 7,6), (- 1, -) 9)] Daher ist seine Determinante (-7xx-9) - (- 1xx6) = 63 + 6 = 69 MXN = [(((- 1) xx (-6) + 2xx2), ((- 1) xx4 + 2xx) (-4))), (((- 1) xx2 + (- 3) xx (-4)), ((- 3) xx4 + (- 5) xx (-4)))] = [(10, -12 ), (10,8)] Daher ist MXN = (10xx8 - (- 12) xx10) = 200