Sei A (x_a, y_a) und B (x_b, y_b) zwei Punkte in der Ebene und sei P (x, y) der Punkt, der den Strich (AB) im Verhältnis k: 1 teilt, wobei k> 0 ist. Zeigen Sie, dass x = (x_a + kx_b) / (1 + k) und y = (y_a + ky_b) / (1 + k)?
Siehe unten den Beweis. Beginnen wir mit der Berechnung von vec (AB) und vec (AP). Wir beginnen mit x vec (AB) / vec (AP) = (k + 1) / k (x_b-x_a) / (x-x_a) = (k + 1) / k Multiplizieren und Umordnen (x_b-x_a) (k) = (x-x_a) (k + 1) Lösen für x (k + 1) x = kx_b-kx_a + kx_a + x_a (k + 1) ) x = x_a + kx_b x = (x_a + kx_b) / (k + 1) In ähnlicher Weise gilt für y (y_b-y_a) / (y-y_a) = (k + 1) / k ky_b-ky_a = y (k +1) - (k + 1) y_a (k + 1) y = ky_b-ky_a + ky_a + y_a y = (y_a + ky_b) / (k + 1)
Sei P (x_1, y_1) ein Punkt und sei l die Linie mit Gleichung ax + durch + c = 0.Die Entfernung d von P-> l ist gegeben durch: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Bestimmen Sie den Abstand d des Punktes P (6,7) von der Linie l mit der Gleichung 3x + 4y = 11?
D = 7 Sei l-> a x + b y + c = 0 und p_1 = (x_1, y_1) ein Punkt, der nicht auf l liegt. Angenommen, b ne 0 und der Aufruf von d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2, nachdem y = - (a x + c) / b in d ^ 2 eingesetzt wurde, haben wir d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Der nächste Schritt ist das d ^ 2-Minimum in Bezug auf x zu finden, sodass wir x so finden werden, dass d / (dx) (d ^ 2) = 2 (x - x_1) - (2a ((c + ax)) / b + y_1 ist )) / b = 0. Dies tritt für x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) auf. Nun, indem wir diesen Wert in d ^ 2 einsetzen, erhalten wir d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a
Der Winkel zwischen zwei Nicht-Null-Vektoren A (Vektor) und B (Vektor) sei 120 (Grad) und sein Ergebnis sei C (Vektor). Welches der folgenden ist (sind) dann richtig?
Option (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad Quadrat abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A B2bb * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad Dreieck abs (bbA - bbB) ^ 2 - C ^ 2 = Dreieck - Quadrat = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)