Der Bereich von
Der Bereich einer Funktion ist die Menge aller möglichen Ausgänge dieser Funktion.
Um den Bereich dieser Funktion zu ermitteln, können wir sie entweder grafisch darstellen oder einige Zahlen einbinden
Stecken wir zuerst die Zahlen ein:
Ob
Ob
Ob
Ob
Ob
Die niedrigste Zahl ist 0. Daher kann der y-Wert für diese Funktion eine beliebige Zahl größer als 0 sein.
Wir können dies deutlicher sehen, wenn wir die Funktion grafisch darstellen:
Der niedrigste Wert von y ist 0, daher sind alle reellen Zahlen der Bereich
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Wie lauten der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion und die x- und y-Abschnitte für y = x ^ 2 - 3?
Da dies in der Form y = (x + a) ^ 2 + b ist: a = 0-> Symmetrieachse: x = 0 b = -3-> Scheitelpunkt (0, -3) ist auch der y-Achsenabschnitt Da der Koeffizient des Quadrats ist positiv (= 1) Dies ist eine sogenannte "Talparabel" und der Y-Wert des Scheitelpunkts ist auch das Minimum. Es gibt kein Maximum, also kann der Bereich: -3 <= y <oo x einen beliebigen Wert haben, also domain: -oo <x <+ oo Die x-Abschnitte (wobei y = 0) sind (-sqrt3,0) und (+ sqrt3,0) graph {x ^ 2-3 [-10, 10, -5, 5]}
Welches sind die Eigenschaften des Graphen der Funktion f (x) = (x + 1) ^ 2 + 2? Zutreffendes bitte ankreuzen. Die Domain besteht aus reellen Zahlen. Der Bereich ist alle reellen Zahlen größer oder gleich 1. Der y-Achsenabschnitt ist 3. Der Graph der Funktion ist 1 Einheit höher und
Erster und dritter sind wahr, zweiter ist falsch, vierter ist unvollendet. - Die Domain besteht in der Tat aus reellen Zahlen. Sie können diese Funktion als x ^ 2 + 2x + 3 umschreiben, was ein Polynom ist, und daher die Domäne mathbb {R} hat. Der Bereich ist nicht alle reelle Zahl größer oder gleich 1, da das Minimum 2 ist Tatsache. (x + 1) ^ 2 ist eine horizontale Translation (eine Einheit links) der "strandard" -Parabel x ^ 2, die den Bereich [0, infty] hat. Wenn Sie 2 hinzufügen, verschieben Sie den Graphen vertikal um zwei Einheiten, sodass der Bereich [2, infty) ist. Um den y-Achsena