Machen Sie die Wahrheitstabelle des Satzes ¬q [(pΛq) V ~ p]?

Machen Sie die Wahrheitstabelle des Satzes ¬q [(pΛq) V ~ p]?
Anonim

Antworten:

Siehe unten.

Erläuterung:

Gegeben: #not p -> (p ^^ q) vv ~ p #

Logikoperatoren:# "nicht p:" nicht p, ~ p; "und:" ^^; oder: vv #

Logiktabellen, Negation:

#ul (| "" p | "" q | "" ~ p | "" ~ q |) #

# "" T | "" T | "" F | "" F | #

# "" T | "" F | "" F | "" T | #

# "" F | "" T | "" T | "" F | #

# "" F | "" F | "" T | "" T | #

Logiktabellen und & oder:

#ul (| "" p | "" q | "" p ^^ q "" "" qvvq "" |) #

# | "" T | "" T | "T" "|" "T" | #

# | "" T | "" F | "F" "|" "T" | #

# | "" F | "" T | "" F "" | "" T "| #

# | "" F | "" F | "F" "|" "F" "| #

Logiktabellen, wenn dann:

#ul (| "" p | "" q | "" p-> q "" |) #

# | "" T | "" T | "" T "" | #

# | "" T | "" F | "" F "" | #

# | "" F | "" T | "" T "" | #

# | "" F | "" F | "" "| #

Gegebener logischer Vorschlag Teil 1:

#ul (| "" p ^^ q "" | "" ~ p "" "" (p ^^ q) vv ~ p |) #

# | "" T "" | "" F "" | "" T "" | #

# | "" F "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" F "" | "" T "" | "" T "" | #

Gegebener logischer Vorschlag Teil 2:

#ul (| "" ~ q "" | "" (p ^^ q) vv ~ p | "" ~ q -> (p ^^ q) vv ~ p |) #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" T "" | "" T "" | #