Antworten:
Villi sind auf die Absorption spezialisiert und haben einzelne Zellen mit dicken Wänden. Diese dünnen Wände ermöglichen einen kürzeren Diffusionsweg.
Erläuterung:
Die Zotten und Mikrozotten erhöhen die intestinale Absorptionsoberfläche und sorgen für eine besonders effiziente Aufnahme von Nährstoffen im Lumen.
Sie haben auch eine reichhaltige Blutversorgung, um einen Konzentrationsgradienten aufrechtzuerhalten.
Die Summe aus dem Alter von fünf Schülern ist wie folgt: Ada und Bob sind 39, Bob und Chim sind 40, Chim und Dan sind 38, Dan und Eze sind 44. Die Gesamtsumme aller fünf Altersgruppen beträgt 105. Fragen Was ist das Alter des jüngsten Studenten? Wer ist der älteste Schüler?
Alter des jüngsten Schülers, Dan ist 16 Jahre und Eze ist der älteste Schüler im Alter von 28 Jahren. Alterssumme von Ada, Bob, Chim, Dan und Eze: 105 Jahre Alterssumme von Ada & Bob ist 39 Jahre. Die Summe des Alters von Bob & Chim ist 40 Jahre. Die Summe des Alters von Chim & Dan ist 38 Jahre. Die Summe des Alters von Dan & Eze ist 44 Jahre. Daher ist die Summe des Alters von Ada, Bob (2), Chim (2), Dan (2) und Eze 39 + 40 + 38 + 44 = 161 Jahre. Daher ist die Summe des Alters von Bob, Chim, Dan 161-105 = 56 Jahre Das Alter von Dan ist also 56-40 = 16 Jahre, das Alter von Chim ist 38-16
Die Zotten des Dünndarms enthalten viele Kapillaren. Warum sind die Kapillaren so wichtig? Wie heißt der Prozess, bei dem Nährstoffe über die Oberflächenzellen der Zotten in das Blut gelangen?
Kapillaren nehmen den Sauerstoff aus den Alveolen in den Blutkreislauf auf. Deshalb sind sie wichtig. Nährstoffe gelangen nicht von den Alveolen in den Blutkreislauf, sondern der Sauerstoff. Der Prozess ist eine einfache Diffusion.
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3