Antworten:
Dieses Problem kann mit der Gleichung gelöst werden
Woher -
Erläuterung:
Sie erhalten eine Frequenz
Fügen Sie die Daten in die Gleichung ein, um die Wellenlänge aufzulösen
Herr Samuel ist doppelt so groß wie sein Sohn William. Williams Schwester Sarah ist 4 Fuß und 6 Zoll groß. Wenn William 3/4 so groß ist wie seine Schwester, wie groß ist Mr. Samuel?
Ich habe folgendes versucht: Lassen Sie uns die Höhen der verschiedenen Leute nennen: s, w und sa für Sarah. Wir erhalten: s = 2w sa = 54 (ich habe es in Zoll angegeben) w = 3/4 sa, also von der zweiten in die dritte: w = 3/4 * 54 = 40,5 in die erste: s = 2 * 40,5 = 81 Zoll entsprechend 6 Fuß und 9 Zoll.
Ein Dreieck hat die Seiten A, B und C. Der Winkel zwischen den Seiten A und B beträgt (5pi) / 6 und der Winkel zwischen den Seiten B und C beträgt pi / 12. Wenn Seite B eine Länge von 1 hat, wie groß ist dann die Fläche des Dreiecks?
Die Summe der Winkel ergibt ein gleichschenkliges Dreieck. Die Hälfte der Eintrittsseite wird aus cos und die Höhe aus Sünde berechnet. Die Fläche wird wie ein Quadrat (zwei Dreiecke) gefunden. Fläche = 1/4 Die Summe aller Dreiecke in Grad beträgt 180 ° in Grad oder π im Bogenmaß. Daher gilt: a + b + c = ππ / 12 + x + (5π) / 6 = πx = π-π / 12- (5π) / 6 x = (12π) / 12-π / 12- (10π) / 12 x = π / 12 Wir stellen fest, dass die Winkel a = b sind. Dies bedeutet, dass das Dreieck gleichschenklig ist, was zu B = A = 1 führt. Das folgende Bild zeigt, wie die entgegengesetzte Höhe vo
Ein Dreieck hat die Seiten A, B und C. Der Winkel zwischen den Seiten A und B beträgt (5pi) / 12 und der Winkel zwischen den Seiten B und C beträgt pi / 12. Wenn Seite B eine Länge von 4 hat, wie groß ist dann die Fläche des Dreiecks?
Pl, siehe unten Der Winkel zwischen den Seiten A und B = 5pi / 12 Der Winkel zwischen den Seiten C und B = pi / 12 Der Winkel zwischen den Seiten C und A = pi -5pi / 12-pi / 12 = pi / 2, daher das Dreieck ist eine rechtwinklige und B ist seine Hypotenuse. Daher ist Seite A = Bsin (pi / 12) = 4sin (pi / 12). Seite C = Bcos (pi / 12) = 4cos (pi / 12). So ist der Bereich = 1/2 ACsin (pi / 2) = 1/2 / 4sin (pi / 12) * 4cos (pi / 12) = 4 * 2sin (pi / 12) * cos (pi / 12) = 4 * sin (2 pi / 12) = 4 * sin (pi / 6) = 4 * 1 / 2 = 2 m² Einheit