
Antworten:
Die einzigen Lösungen in nicht negativen Ganzzahlen sind:
# (a, b, c, d) = (0, 0, 1, 0) #
und:
# (a, b, c, d) = (0, 0, 0, 1) #
Erläuterung:
Sofern es keine zusätzlichen Einschränkungen gibt
# c + d = + - qrt (a ^ 2 + 2ab + b ^ 2 + 1) #
Du könntest es also lösen
#c = -d + -sqrt (a ^ 2 + 2ab + b ^ 2 + 1) #
oder für
#d = -c + -sqrt (a ^ 2 + 2ab + b ^ 2 + 1) #
Ob
Daher finden wir:
# (a + b) ^ 2 = 0 #
# (c + d) ^ 2 = 1 #
So:
# c + d = + -1 #
So könnten wir schreiben:
#c = -d + -1 #
#d = -c + -1 #
Alternativ, wenn
# (a, b, c, d) in {(0, 0, 1, 0), (0, 0, 0, 1)} #
Die Domäne von f (x) ist die Menge aller reellen Werte außer 7, und die Domäne von g (x) ist die Menge aller reellen Werte außer -3. Was ist die Domäne von (g * f) (x)?

Alle reellen Zahlen außer 7 und -3, wenn Sie zwei Funktionen multiplizieren, was machen wir dann? Wir nehmen den f (x) -Wert und multiplizieren ihn mit dem g (x) -Wert, wobei x gleich sein muss. Beide Funktionen haben jedoch Einschränkungen 7 und -3, daher muss das Produkt der beiden Funktionen * beide * Einschränkungen haben. Normalerweise werden bei Operationen an Funktionen, wenn die vorherigen Funktionen (f (x) und g (x)) Einschränkungen hatten, diese immer als Teil der neuen Einschränkung der neuen Funktion oder ihrer Operation betrachtet. Sie können dies auch visualisieren, indem Sie zwe
Die Linie (k-2) y = 3x trifft an zwei verschiedenen Punkten auf die Kurve xy = 1 -x. Findet die Menge der Werte von k. Geben Sie auch die Werte von k an, wenn die Linie die Kurve tangiert. Wie finde ich es?

Die Gleichung der Linie kann als ((k-2) y) / 3 = x umgeschrieben werden. Durch Ersetzen des Werts von x in die Gleichung der Kurve (((k-2) y) / 3) y = 1- ( (k-2) y) / 3 sei k-2 = a (y ^ 2a) / 3 = (3-ya) / 3 y ^ 2a + ya-3 = 0 Da sich die Linie an zwei verschiedenen Punkten schneidet, ist die Diskriminante der obigen Gleichung muss größer als Null sein. D = a ^ 2-4 (-3) (a)> 0 a [a + 12]> 0 Der Bereich von a ergibt sich aus a in (-oo, -12) uu (0, oo) (k-2) in (-oo, -12) uu (2, oo) Hinzufügen von 2 auf beiden Seiten, k in (-oo, -10), (2, oo) Wenn die Linie eine Tangente sein muss, die Die Diskriminante mu
Die Summe von fünf Zahlen ist -1/4. Die Zahlen enthalten zwei Paare von Gegensätzen. Der Quotient zweier Werte ist 2. Der Quotient zweier verschiedener Werte ist -3/4. Was sind die Werte?

Wenn das Paar, dessen Quotient 2 ist, eindeutig ist, gibt es vier Möglichkeiten ... Es wird gesagt, dass die fünf Zahlen zwei Paare von Gegensätzen enthalten, also können wir sie nennen: a, -a, b, -b, c und ohne Verlust der Allgemeinheit sei a> = 0 und b> = 0. Die Summe der Zahlen ist -1/4, also: -1/4 = Farbe (rot) (Abbruch (Farbe (schwarz) (a))) + ( Farbe (rot) (Abbruch (Farbe (schwarz) (- a)))) + Farbe (rot) (Abbruch (Farbe (schwarz) (b)))) + (Farbe (rot) (Abbruch (Farbe (schwarz) (- b)))) + c = c Es wird gesagt, dass der Quotient zweier Werte 2 ist. Lassen Sie uns diese Aussage dahingehend inte