Antworten:
Der Sinusknoten befindet sich im Überlegene Wand des rechten Atriums.
Erläuterung:
Das Herz verfügt über ein eigenes intrinsisches Regulationssystem, das Leitungssystem, das elektrische Impulse über das Herz erzeugt und verteilt, um Herzmuskelfasern oder -zellen dazu anzuregen, sich zusammenzuziehen. Diese rhythmische Kontraktion verteilt das Blut im Gewebe.
Das leitfähige System beginnt am Sinusknoten (SA-Knoten). Dieser Knoten (der sich in der oberen Wand des rechten Vorhofs befindet) startet jeden Herzzyklus durch Auslösen eines elektrischen Impulses.
Sobald ein Impuls vom SA-Knoten initiiert wird, breitet sich der Impuls über beide Vorhöfe aus, so dass sie gleichzeitig zusammenziehen. Gleichzeitig entpolarisiert es die atrioventrikulär (AV) Knoten. Es befindet sich im unteren Teil des rechten Atriums.
Vom AV-Knoten aus wird ein Feld aus leitenden Fasern mit der Bezeichnung atrioventrikuläres Bündel oder ein Bündel von His läuft durch den Herzmuskel zur Oberseite des interventrikulären Septums. Es verzweigt sich dann, um die rechten und linken Bündelzweige zu bilden.
Die Kontraktion der Ventrikel wird durch die stimuliert Purkinjes Fasern. Sie treten aus den Bündelästen hervor und gelangen in die Zellen des Herzmuskels der Ventrikel.
Diagramm des leitfähigen Systems des Herzens:
Ein Objekt befindet sich bei (6, 7, 2) im Ruhezustand und beschleunigt konstant mit einer Geschwindigkeit von 4/3 m / s ^ 2, wenn es sich zu Punkt B bewegt. Wenn sich Punkt B bei (3, 1, 4) befindet, wie lange dauert es, bis das Objekt den Punkt B erreicht? Angenommen, alle Koordinaten sind in Metern.
T = 3.24 Sie können die Formel verwenden s = ut + 1/2 (bei ^ 2) u ist die Anfangsgeschwindigkeit s ist die zurückgelegte Entfernung t ist die Zeit a ist die Beschleunigung Nun beginnt sie mit dem Ruhezustand, so dass die Anfangsgeschwindigkeit 0 s = 1/2 ist (at ^ 2) Um s zwischen (6,7,2) und (3,1,4) zu finden, verwenden wir die Abstandsformel s = sqrt ((6-3) ^ 2 + (7-1) ^ 2 + (2) -4) ^ 2) s = sqrt (9 + 36 + 4) s = 7 Die Beschleunigung beträgt 4/3 Meter pro Sekunde pro Sekunde 7 = 1/2 ((4/3) t ^ 2) 14 * (3/4) ) = t ^ 2 t = sqrt (10,5) = 3,24
Wie groß ist die Beschleunigung des Blocks, wenn er sich am Punkt x = 0,24 m, y = 0,52 m befindet? Was ist die Richtung der Beschleunigung des Blocks, wenn er sich am Punkt x = 0,24 m, y = 0,52 m befindet? (Siehe Einzelheiten).
Da x und y orthogonal zueinander sind, können diese unabhängig voneinander behandelt werden. Wir wissen auch, dass vecF = -gradU: .x-Komponente der zweidimensionalen Kraft F_x = - (delU) / (delx) ist. F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2 ( 3.65 Jm ^ -3) y ^ 3] F_x = -11.80x x-Komponente der Beschleunigung F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At der gewünschte Punkt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 In ähnlicher Weise ist die y-Kraftkomponente F_y = -del / (dely) [(5,90 Jm ^ -2) x ^ 2 - (3,65 Jm) ^ -3) y ^ 3] F_y = 10,95y ^ 2 y-Komponente der Bes
Eine Straßenlaterne befindet sich an der Spitze einer 15 Fuß hohen Stange. Eine 6 Fuß große Frau geht von der Stange mit einer Geschwindigkeit von 4 ft / sec auf einem geraden Weg. Wie schnell bewegt sich die Spitze ihres Schattens, wenn sie 50 Fuß von der Basis der Stange entfernt ist?
D '(t_0) = 20/3 = 6, bar6 ft / s Verwenden von Thales Proportionalitätssatz für die Dreiecke AhatOB, AhatZH Die Dreiecke sind ähnlich, da sie HatO = 90 °, HatZ = 90 ° und BhatAO gemeinsam haben. Wir haben (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 15w = 6 (ω + x) <15> = 6ω + 6x <=> 9ω = 6x <=> 3ω = 2x <=> ω = (2x) / 3 Es sei OA = d, dann sei d = ω + x = x + (2x) / 3 = (5x) / 3d (t) = (5x (t)) / 3d '(t) = (5x' (t)) / 3 Für t = t_0 gilt x '(t_0) = 4 ft / s. Daher ist d' (t_0) = (5x '( t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft