Antworten:
Die Gleichung der Parabel ist
Erläuterung:
Graph {x = 16y ^ 2-96y + 145 -10, 10, -5, 5}
Hier liegt der Fokus bei (5,3) und Directrix ist x = -3; Wir kennen den Scheitelpunkt
ist gleich weit entfernt von focus und directrix. So ist der Scheitelpunkt
Ordinate ist bei (1,3) und der Abstand p zwischen Scheitelpunkt und Directrix ist
und directrix bei x = -3 ist
oder
Was ist die Standardform der Gleichung der Parabel mit einer Directrix bei x = 5 und einem Fokus bei (11, -7)?
(y + 7) ^ 2 = 12 * (x-8) Ihre Gleichung hat die Form (yk) ^ 2 = 4 * p * (xh) Der Fokus ist (h + p, k) Die Directrix ist (hp) Gegeben sei der Fokus bei (11, -7) h + p = 11 "und" k = -7. Die Direktzahl x = 5 -> hp = 5 h + p = 11 "(Gleichung 1)" hp = 5 (Gleichung (2)) ul (Verwendung (Gleichung (2)) und Löse nach (h)) h = 5 + p (Gleichung (3)) ul (Verwendung (Gleichung (1)) + (Gleichung (3)) ), um den Wert von "p) (5 + p) + p = 11 5 + 2p = 11 2p = 6 p = 3 ul zu ermitteln (" Benutze (Gleichung 3)), um den Wert von "h) h = 5 + zu finden ph = 5 + 3 h = 8 "Einstecken der Werte von&q
Was ist die Standardform der Gleichung der Parabel mit einer Directrix bei x = -6 und einem Fokus bei (12, -5)?
Y ^ 2 + 10y-36x + 133 = 0 "für jeden Punkt" (x, y) "auf der Parabel" "der Abstand von" (x, y) "zum Fokus und die Direktive" "sind" "gleich "Farbe (blau)" Abstandsformel "sqrt ((x-12) ^ 2 + (y + 5) ^ 2) = | x + 6 | Farbe (blau) "beide Seiten quadrieren" (x-12) ^ 2 + (y + 5) ^ 2 = (x + 6) ^ 2 rArrcancel (x ^ 2) -24x + 144 + y ^ 2 + 10y + 25 = abbrechen (x ^ 2) + 12x + 36 rArry ^ 2 + 10y-36x + 133 = 0
Was ist die Standardform der Gleichung der Parabel mit einer Directrix bei x = -5 und einem Fokus bei (-7, -5)?
Die Gleichung der Parabel lautet (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Jeder Punkt (x, y) der Parabel ist gleich weit von der Directrix und dem Fokus. Daher ist x - (- 5) = sqrt ((x - (- 7)) ^ 2+ (y - (- 5)) ^ 2) x + 5 = sqrt ((x + 7) ^ 2 + (y +) 5) ^ 2) Quadrieren und Entwickeln des (x + 7) ^ 2 -Terms und des LHS (x + 5) ^ 2 = (x + 7) ^ 2 + (y + 5) ^ 2 x ^ 2 + 10x + 25 = x ^ 2 + 14x + 49 + (y + 5) ^ 2 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Die Gleichung der Parabel lautet (y + 5) ^ 2 = -4x-24 = -4 (x + 6) graphische Darstellung {((y + 5) ^ 2 + 4x + 24) ((x + 7) ^ 2 + (y + 5) ^ 2-0,03) (y-100) (x + 5)) = 0 [-17,68, 4,83, -9,325, 1,