Antworten:
Sehen Sie unten einen Lösungsprozess:
Erläuterung:
Zuerst müssen wir die Steigung der Linie bestimmen. Die Steigung kann mithilfe der folgenden Formel ermittelt werden:
Woher
Das Ersetzen der Werte aus den Punkten des Problems ergibt:
Als Nächstes können wir die Formel für die Punktneigung verwenden, um eine Gleichung für die Linie zu schreiben. Die Punktneigungsform einer linearen Gleichung lautet:
Woher
Durch Ersetzen der berechneten Steigung und der Werte vom ersten Punkt des Problems erhalten Sie:
Wir können auch die Steigung, die wir berechnet haben, und die Werte vom zweiten Punkt des Problems aus ersetzen.
Bei Bedarf können wir diese Gleichung in eine Steigungsschnittform umwandeln. Die Steigungsschnittform einer linearen Gleichung lautet:
Woher
Wie lautet die Gleichung der Linie, die durch (-1,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13, -1), (8,4)?
Sehen Sie sich unten einen Lösungsprozess an: Zuerst müssen wir die Steigung der beiden Punkte des Problems ermitteln. Die Steigung kann mithilfe der folgenden Formel ermittelt werden: m = (Farbe (rot) (y_2) - Farbe (blau) (y_1)) / (Farbe (rot) (x_2) - Farbe (blau) (x_1)) wobei m ist Die Neigung und (Farbe (blau) (x_1, y_1)) und (Farbe (rot) (x_2, y_2)) sind die zwei Punkte auf der Linie. Ersetzen der Werte aus den Punkten des Problems ergibt sich: m = (Farbe (rot) (4) - Farbe (blau) (- 1)) / (Farbe (rot) (8) - Farbe (blau) (13)) = (Farbe (rot) (4) + Farbe (blau) (1)) / (Farbe (rot) (8) - Farbe (blau) (13)) = 5 /
Wie lautet die Gleichung der Linie, die durch (-1,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13,1), (- 2,3)?
15x-2y + 17 = 0. Die Steigung m 'der Linie durch die Punkte P (13,1) & Q (-2,3) ist m' = (1-3) / (13 - (- 2)) = - 2/15. Also, wenn die Steigung der reqd. Zeile ist m, also als reqd. Linie ist bot zur Linie PQ, mm '= - 1 rArr m = 15/2. Jetzt verwenden wir die Slope-Point-Formel für die Anforderung. Linie, die bekanntermaßen durch den Punkt (-1,1) verläuft. Somit ist die Gl. von der reqd. Zeile ist, y-1 = 15/2 (x - (-1)) oder 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.
Wie lautet die Gleichung der Linie, die durch (-2,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (1,4), (- 2,3)?
Der erste Schritt besteht darin, die Steigung der Linie durch (1,4) und (-2,3) zu ermitteln, die 1/3 beträgt. Dann haben alle Linien senkrecht zu dieser Linie die Neigung -3. Das Finden des y-Achsenabschnitts sagt uns, dass die Gleichung der Linie, nach der wir suchen, y = -3x-5 ist. Die Steigung der Linie durch (1,4) und (-2,3) ist gegeben durch: m = (y_2-y_1) / (x_2-x_1) = (3-4) / ((- 2) -1) = (-1) / (- 3) = 1/3 Wenn die Steigung einer Linie m ist, haben die dazu senkrechten Linien Steigung -1 / m. In diesem Fall beträgt die Steigung der senkrechten Linien -3. Die Form einer Linie ist y = mx + c, wobei c der y-