Antworten:
Erläuterung:
Bitte beachten Sie, dass es sich bei der Directrix um eine vertikale Linie handelt, daher ist die Scheitelpunktform der Gleichung:
woher
Ersetzen Sie den Scheitelpunkt,
Vereinfachen:
Lösen Sie Gleichung 2 für "a"
Ersetzen Sie "a" in Gleichung 3:
Hier ist ein Diagramm der Parabel mit dem Scheitelpunkt und der Directrix:
Wie lautet die Gleichung einer Parabel mit einem Fokus bei (-2, 6) und einem Scheitelpunkt bei (-2, 9)? Was ist, wenn Fokus und Scheitelpunkt gewechselt werden?
Die Gleichung lautet y = -1 / 12 (x + 2) ^ 2 + 9. Die andere Gleichung ist y = 1/12 (x + 2) * 2 + 6 Der Fokus ist F = (- 2,6) und der Scheitelpunkt ist V = (- 2,9). Daher ist die Directrix y = 12 Der Scheitelpunkt ist der Mittelpunkt des Fokus und der Directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Jeder Punkt (x, y) auf der Parabel ist gleich weit vom Fokus und entfernt die Direktive y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 Graph (( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47, 32
Wie lautet die Gleichung der Parabel mit einem Fokus bei (0, 2) und einem Scheitelpunkt bei (0,0)?
Y = 1 / 8x ^ 2 Wenn der Fokus über oder unter dem Scheitelpunkt liegt, lautet die Scheitelpunktform der Parabelgleichung: y = a (xh) ^ 2 + k "[1]" Wenn der Fokus auf dem liegt links oder rechts den Scheitelpunkt, dann ist die Scheitelpunktform der Parabelgleichung: x = a (yk) ^ 2 + h "[2]" In unserem Fall verwenden wir Gleichung [1], in der wir sowohl h als auch k durch 0 ersetzen: y = a (x-0) ^ 2 + 0 "[3]" Die Brennweite f vom Scheitelpunkt zum Fokus ist: f = y_ Fokus "-y_" Scheitelpunkt f = 2-0 f = 2 Berechnen Sie den Wert von "a" mit der folgenden Gleichung: a = 1 /
Wie lautet die Standardformelgleichung der Parabel mit einer Directrix von x = 5 und einem Fokus bei (11, -7)?
Standardform ist: x = 1 / 12y ^ 2 + 14 / 12y + 145/12 Da die Directrix eine vertikale Linie ist, x = 5, lautet die Scheitelpunktform für die Gleichung der Parabel: x = 1 / (4f) (yk.) ) ^ 2 + h "[1]" wobei (h, k) der Scheitelpunkt ist und f der vorzeichenbehaftete horizontale Abstand vom Scheitelpunkt zum Fokus ist. Wir wissen, dass die y-Koordinate k des Scheitelpunkts der y-Koordinate des Fokus entspricht: k = -7 Ersetzen Sie -7 durch k in Gleichung [1]: x = 1 / (4f) (y - 7) ) ^ 2 + h "[2]" Wir wissen, dass die x-Koordinate des Scheitelpunkts der Mittelpunkt zwischen der x-Koordinate des Fokus und