Antworten:
Erläuterung:
Lassen
Irgendein quadratisches in
Jedes Polynom in
Der Graph einer quadratischen Funktion hat x-Abschnitte -2 und 7/2. Wie schreibt man eine quadratische Gleichung, die diese Wurzeln hat?
Finden Sie f (x) = ax ^ 2 + bx + c = 0, wobei Sie die 2 reellen Wurzeln kennen: x1 = -2 und x2 = 7/2. Bei zwei reellen Wurzeln c1 / a1 und c2 / a2 einer quadratischen Gleichung ax ^ 2 + bx + c = 0 gibt es drei Beziehungen: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Diagonalsumme). In diesem Beispiel sind die zwei reellen Wurzeln: c1 / a1 = -2/1 und c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. Die quadratische Gleichung lautet: Antwort: 2x ^ 2 - 3x - 14 = 0 (1) Prüfen Sie: Finden Sie die 2 echten Wurzeln von (1) anhand der neuen AC-Methode. Umgesetzte Gleichung: x 2 - 3 x - 28 = 0 (2). L
Die Wurzeln der quadratischen Gleichung 2x ^ 2-4x + 5 = 0 sind Alpha (a) und Beta (b). (a) Zeigen Sie, dass 2a ^ 3 = 3a-10 (b) Finden Sie die quadratische Gleichung mit den Wurzeln 2a / b und 2b / a?
Siehe unten. Finden Sie zuerst die Wurzeln von: 2x ^ 2-4x + 5 = 0 Verwenden Sie die quadratische Formel: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + - qrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + - isqrt (6)) / 2 alpha = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6 isqrt (6)) / 8 Farbe (blau) (= (- 14 + 3 isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3 isqrt) (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2Farbe (blau) (= (- 14 + 3isqr
Welche Aussage beschreibt die Gleichung (x + 5) 2 + 4 (x + 5) + 12 = 0 am besten? Die Gleichung hat eine quadratische Form, da sie mit einer u-Substitution u = (x + 5) als quadratische Gleichung umgeschrieben werden kann. Die Gleichung hat eine quadratische Form, denn wenn sie erweitert wird,
Wie unten erläutert, wird die u-Substitution sie in u als quadratisch beschreiben. Bei Quadrat in x hat seine Expansion die höchste Potenz von x als 2, am besten als quadratisch in x.