Antworten:
Erläuterung:
Antworten:
Erläuterung:
Angenommen, Sie haben
Schreiben
-
# "" ^ 0 D_k = 1 # -
# "" ^ 1 D_k = k # -
# "" ^ n D_1 = 1 # -
# "" ^ n D_2 = "" ^ n D_1 + "" ^ (n-1) D_1 + … + "" ^ 0 D_1 = n + 1 # -
# "" ^ n D_3 = "" ^ D_2 + "" (n-1) D_2 + … + "" ^ 0 D_2 # # = (n + 1) + ((n - 1) + 1) + … + (1 + 1) + (0 + 1) = 1/2 (n + 1) (n + 2) # -
# "" ^ n D_4 = "" ^ D_3 + "" (n-1) D_3 + … + "" ^ 0 D_3 # # = 1/2 (n + 1) (n + 2) + 1/2 ((n-1) + 1) ((n-1) +2) + … + 1/2 (0 + 1) (0 + 2) #
# = 1/6 (n + 1) (n + 2) (n + 3) #
# "" ^ n D_5 = "" ^ D_4 + "" (n-1) D_4 + … + "" ^ 0 D_4 # # = 1/6 (n + 1) (n + 2) (n + 3) +1/6 ((n-1) +1) ((n-1) + 2) ((n-1) +3)) + … + 1/6 (0 + 1) (0 + 2) (0 + 3) #
# = 1/24 (n + 1) (n + 2) (n + 3) (n + 4) #
So:
# 9 D_5 = 1/24 (9 + 1) (9 + 2) (9 + 3) (9 + 4) = 715 #
Die Zahlen auf drei Verlosungskarten sind aufeinanderfolgende ganze Zahlen mit einer Summe von 7530. Wie viele Zahlen sind die Zahlen?
2509 ";" 2510 ";" 2511 Die erste Zahl sei n. Dann sind die nächsten zwei Zahlen: "n + 1"; "n + 2. So n + n + 1 + n + 2 = 7530. 3n + 3 = 7530 3 von beiden Seiten abziehen 3n + 3-3 = 7530-3 aber + 3-3 = 0 3n = 7527 beide Seiten durch 3 teilen 3 / 3xxn = 7527/3 aber 3/3 = 1 n = 2509 '~~~~ ~~~~~~~~~~~~~~~~~~ Prüfung 3 (2509) + 3 + = 7530
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
Die Summe aus zwei Zahlen ist 40. Die größere Zahl ist 6 mehr als die kleinere. Was ist die größere Anzahl? Ich hoffe, dass jemand meine Frage beantworten kann ... ich brauche sie wirklich ... Danke
Sehen Sie sich unten einen Lösungsprozess an: Zuerst rufen Sie die beiden Nummern an: n für die kleinere und m für die größere. Aus den Informationen in dem Problem können wir zwei Gleichungen schreiben: Gleichung 1: Wir kennen die zwei Zahlen, oder addieren sich zu 40, so dass wir schreiben können: n + m = 40 Gleichung 2: Wir wissen auch, dass die größere Zahl (m) 6 ist mehr als die kleinere Zahl, so dass wir schreiben können: m = n + 6 oder m - 6 = n Wir können jetzt (m - 6) für n in der größeren Zahl ersetzen und nach m auflösen: n + m = 40 wird: