Antworten:
siehe unten
Erläuterung:
Die Matrix
# R (alpha) = ((cos alpha, -sin alpha), (sin alpha, cos alpha)) #
Aber anstatt zu drehen CCW das flugzeug drehen CW der Vektor
IOW, ich denke, deine Argumentation sieht gut aus.
Ein Objekt mit einer Masse von 8 kg befindet sich auf einer Rampe mit einer Steigung von pi / 8. Wenn das Objekt mit einer Kraft von 7 N an der Rampe nach oben gedrückt wird, wie hoch ist dann der minimale Haftreibungskoeffizient, damit das Objekt bleiben kann?
Die Gesamtkraft, die entlang der Ebene auf das Objekt nach unten wirkt, ist mg sin ((pi) / 8) = 8 * 9,8 * sin ((pi) / 8) = 30N. Die aufgebrachte Kraft ist entlang der Ebene 7N nach oben. Die Nettokraft auf das Objekt beträgt also 30-7 = 23N entlang der Ebene. Daher sollte eine statische Reibungskraft, die zum Ausgleich dieses Kraftbetrags wirken muss, entlang der Ebene nach oben wirken. Hier ist die statische Reibungskraft, die wirken kann, mu mg cos ((pi) / 8) = 72,42 mN (wobei mu der Koeffizient der statischen Reibungskraft ist). Also 72,42 mu = 23 oder mu = 0,32
Ein Objekt mit einer Masse von 5 kg befindet sich auf einer Rampe mit einer Steigung von pi / 12. Wenn das Objekt mit einer Kraft von 2 N an der Rampe nach oben gedrückt wird, wie hoch ist dann der minimale Haftreibungskoeffizient, damit das Objekt bleiben kann?
Betrachten wir die Gesamtkraft auf das Objekt: 2N die Neigung nach oben. mgsin (pi / 12) ~ 12,68 N nach unten. Daher ist die Gesamtkraft 10,68N nach unten. Nun wird die Reibungskraft als Mumgcostheta angegeben, was sich in diesem Fall auf ~ 47,33 mu N vereinfacht, also mu = 10,68 / 47,33 ~ 0,23. Anmerkung: Wäre da nicht die zusätzliche Kraft gewesen, mu = Tantheta
Eine feste Scheibe, die sich gegen den Uhrzeigersinn dreht, hat eine Masse von 7 kg und einen Radius von 3 m. Wenn sich ein Punkt am Rand der Platte mit 16 m / s in der Richtung senkrecht zum Radius der Platte bewegt, wie groß sind dann der Drehimpuls und die Geschwindigkeit der Platte?
Für eine Scheibe, die mit ihrer Achse durch das Zentrum und senkrecht zu ihrer Ebene rotiert, ist das Trägheitsmoment I = 1 / 2MR ^ 2. In diesem Fall ist das Trägheitsmoment I = 1 / 2MR ^ 2 = 1/2 xx (7 kg) xx (3 m) ^ 2 = 31,5 kgm ^ 2 wobei M die Gesamtmasse der Scheibe und R der Radius ist. Die Winkelgeschwindigkeit (omega) der Scheibe wird als gegeben: omega = v / r wobei v die lineare Geschwindigkeit in einem gewissen Abstand r von der Mitte ist. Also ist die Winkelgeschwindigkeit (omega) in unserem Fall = v / r = (16ms ^ -1) / (3m) ~ 5.33 rad "/" s. Daher ist das Angular Momentum = I omega ~ 31.