Die Schenkel eines rechtwinkligen Dreiecks haben eine Länge von x + 4 und x + 7. Die Hypotenusenlänge beträgt 3x. Wie finden Sie den Umfang des Dreiecks?

Die Schenkel eines rechtwinkligen Dreiecks haben eine Länge von x + 4 und x + 7. Die Hypotenusenlänge beträgt 3x. Wie finden Sie den Umfang des Dreiecks?
Anonim

Antworten:

#36#

Erläuterung:

Der Umfang entspricht der Summe der Seiten, der Umfang ist also:

# (x + 4) + (x + 7) + 3x = 5x + 11 #

Wir können jedoch den Satz des Pythagoras verwenden, um den Wert von zu bestimmen # x # da dies ein rechtwinkliges dreieck ist.

# a ^ 2 + b ^ 2 + c ^ 2 #

woher # a, b # sind Beine und # c # ist die Hypotenuse.

Stecken Sie die bekannten Nebenwerte ein.

# (x + 4) ^ 2 + (x + 7) ^ 2 = (3x) ^ 2 #

Verteilen und lösen.

# x ^ 2 + 8x + 16 + x ^ 2 + 14x + 49 = 9x ^ 2 #

# 2x ^ 2 + 22x + 65 = 9x ^ 2 #

# 0 = 7x ^ 2-22x-65 #

Faktor quadratisch (oder verwenden Sie die quadratische Formel).

# 0 = 7x ^ 2-35x + 13x-65 #

# 0 = 7x (x-5) +13 (x-5) #

# 0 = (7x + 13) (x-5) #

# x = -13 / 7,5 #

Nur # x = 5 # gilt hier, da die Länge der Hypotenuse negativ wäre, wenn # x = -13 / 7 #.

Schon seit # x = 5 #und der Umfang ist # 5x + 11 #ist der Umfang:

#5(5)+11=36#