Antworten:
Erläuterung:
Die Definition einer Parabel besagt, dass alle Punkte auf der Parabel immer den gleichen Abstand zum Fokus und zur Directrix haben.
Wir können es lassen
Wir können jetzt eine Gleichung mit diesen Punkten aufstellen. Wir werden die Entfernungsformel verwenden, um die Entfernungen zu ermitteln:
Wir können dies auf unsere Punkte anwenden, um zuerst die Entfernung zwischen ihnen zu ermitteln
Dann werden wir die Entfernung zwischen berechnen
Da diese Abstände gleich sein müssen, können wir sie in eine Gleichung setzen:
Seit dem Punkt
Zuerst werden wir beide Seiten quadratisch machen:
Wir können dann erweitern:
Wenn wir alles auf die linke Seite legen und nach Begriffen sammeln, erhalten wir:
Das ist die Gleichung unserer Parabel.
Wie lautet die Gleichung einer Parabel mit einem Fokus bei (-2, 6) und einem Scheitelpunkt bei (-2, 9)? Was ist, wenn Fokus und Scheitelpunkt gewechselt werden?
Die Gleichung lautet y = -1 / 12 (x + 2) ^ 2 + 9. Die andere Gleichung ist y = 1/12 (x + 2) * 2 + 6 Der Fokus ist F = (- 2,6) und der Scheitelpunkt ist V = (- 2,9). Daher ist die Directrix y = 12 Der Scheitelpunkt ist der Mittelpunkt des Fokus und der Directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Jeder Punkt (x, y) auf der Parabel ist gleich weit vom Fokus und entfernt die Direktive y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 Graph (( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47, 32
Wie lautet die Standardform der Gleichung der Parabel mit einer Directrix bei x = -3 und einem Fokus bei (1, -1)?
X = 1/8 (y + 1) ^ 2-8 Parabola ist der Ort eines Punkts, der sich so bewegt, dass seine Entfernung von einem bestimmten Punkt, der als Fokus bezeichnet wird, und einer bestimmten Linie, die als Directrix bezeichnet wird, immer gleich ist. Der Punkt sei (x, y). Sein Abstand vom Fokus (1, -1) ist sqrt ((x-1) ^ 2 + (y + 1) ^ 2) und sein Abstand von der Direktive x = -3 oder x + 3 = 0 ist x + 3 von Parabel ist sqrt ((x-1) ^ 2 + (y + 1) ^ 2) = x + 3 und Quadrieren (x-1) ^ 2 + (y + 1) ^ 2 = (x + 3) ^ 2 dh x ^ 2-2x + 1 + y ^ 2 + 2y + 1 = x ^ 2 + 6x + 9 dh y ^ 2 + 2y-7 = 8x oder 8x = (y + 1) ^ 2-8 oder x = 1 / 8 (y + 1) ^ 2-8 Grap
Wie lautet die Standardform der Gleichung der Parabel mit einer Directrix bei x = 3 und einem Fokus bei (-5,5)?
Y ^ 2-10y + 6x + 41 = 0 "für jeden Punkt" (x, y) "auf der Parabel" "der Abstand von" (x, y) "zum Fokus und zur Directrix" "sind gleich" rArrsqrt (( x + 5) ^ 2 + (y-5) ^ 2) = | x-3 | Farbe (blau) "beide Seiten quadrieren" (x + 5) ^ 2 + (y-5) ^ 2 = (x-3) ^ 2 rArrcancel (x ^ 2) + 10x + 25 + y ^ 2-10y + 25 = abbrechen (x ^ 2) -6x + 9 rArry ^ 2-10y + 6x + 41 = 0larrcolor (rot) "ist die Gleichung"