Wie unterscheidet man sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?

Wie unterscheidet man sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?
Anonim

Antworten:

# (dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) #

Erläuterung:

# (dy) / (dx) = 1 / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) sen (x ^ 2 + 2) × 2x + 2sen (x + 2)) #

# (dy) / (dx) = (2xsen (x ^ 2 + 2) + 2sen (x + 2)) / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) #

# (dy) / (dx) = (cancel2 (xsen (x ^ 2 + 2) + sen (x + 2))) / (cancel2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))) #

# (dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) #