Wie groß ist der Interquartilbereich des Datensatzes: 8, 9, 10, 11, 12?

Wie groß ist der Interquartilbereich des Datensatzes: 8, 9, 10, 11, 12?
Anonim

Antworten:

# "interquartile range" = 3 #

Erläuterung:

# "Zuerst den Median und die unteren / oberen Quartile finden" #

# "Der Median ist der mittlere Wert des Datensatzes" #

# "den Datensatz in aufsteigender Reihenfolge anordnen" #

# 8Farbe (Weiß) (x) 9Farbe (Weiß) (X) Farbe (Rot) (10) Farbe (Weiß) (X) 11Farbe (Weiß) (X) 12 #

#rArr "der Median" = 10 #

# "das untere Quartil ist der mittlere Wert der Daten zu den" #

# "links vom Median. Wenn es keinen genauen Wert gibt, dann ist es das" #

# "Durchschnitt der Werte auf beiden Seiten der Mitte" #

# "das obere Viertel ist der mittlere Wert der Daten zu" #

# "rechts vom Median. Wenn es keinen genauen Wert gibt, dann ist es das" #

# "Durchschnitt der Werte auf beiden Seiten der Mitte" #

# 8Farbe (weiß) (x) Farbe (lila) (Uarr) Farbe (weiß) (x) 9Farbe (weiß) (x) Farbe (rot) (10) Farbe (weiß) (x) 11Farbe (weiß) (x) Farbe (lila) (Uarr) Farbe (weiß) (x) 12 #

# "unteres Quartil" (Q_1) = (8 + 9) /2=8.5#

# "oberes Quartil" (Q_3) = (11 + 12) /2=11.5#

# "Interquartilbereich" = Q_3-Q_1 = 11.5-8.5 = 3 #