Antworten:
Die Piste
Ein Punkt auf der Linie ist
Erläuterung:
Die Steigungsschnittform einer Linie lautet:
woher
Für die angegebene Zeile
Die Piste
Ein Punkt auf der Linie ist
Das Gewicht eines Objekts auf dem Mond. variiert direkt mit dem Gewicht der Objekte auf der Erde. Ein 90-Pfund-Objekt auf der Erde wiegt 15 Pfund auf dem Mond. Wie viel wiegt es auf dem Mond, wenn ein Objekt auf der Erde 156 Pfund wiegt?
26 Pfund Das Gewicht des ersten Objekts auf der Erde beträgt 90 Pfund, aber auf dem Mond 15 Pfund. Dies gibt uns ein Verhältnis zwischen den relativen Gravitationsfeldstärken der Erde und des Mondes, W_M / (W_E), was das Verhältnis (15/90) = (1/6) von ungefähr 0,167 ergibt. Mit anderen Worten, Ihr Gewicht auf dem Mond ist 1/6 dessen, was es auf der Erde gibt. So multiplizieren wir die Masse des schwereren Objekts (algebraisch) wie folgt: (1/6) = (x) / (156) (x = Masse auf dem Mond) x = (156) mal (1/6) x = 26 Das Gewicht des Objekts auf dem Mond beträgt also 26 Pfund.
Wenn eine Kraft von 40 N, die parallel zur Steigung und auf die Steigung gerichtet ist, auf eine Kiste mit einer reibungslosen Neigung ausgeübt wird, die 30 ° über der Horizontalen liegt, beträgt die Beschleunigung der Kiste 2,0 m / s ^ 2 in der Neigung . Die Masse der Kiste ist?
M ~ = 5,8 kg Die Nettokraft auf der Steigung ist gegeben durch F_ "net" = m * a F_ "net" ist die Summe der 40 N-Kraft auf der Steigung und die Gewichtskomponente des Objekts m * g nach unten die Steigung F_ "netto" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Lösen nach m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 Nm * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 Nm * (6,9 m / s ^ 2) = 40 Nm = (40 N) / (6,9 m / s ^ 2) Anmerkung: der Newton entspricht kg * m / s ^ 2. (Siehe F = ma, um dies zu bestätigen.) M = (40 kg * Abbruch (m / s ^ 2)) / (4,49 Abbruch (m / s ^ 2)) = 5,8 kg Ich hof
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo