Antworten:
Erläuterung:
Lassen Sie uns zunächst auf das eingehen, was wir bereits aus der Frage wissen. Wir wissen das das
Unsere neue Gleichung geht durch
In unserem Punkt
Die Linie, die senkrecht steht
Hier ist ein Diagramm beider Linien.
Antworten:
Lösung ist,
Erläuterung:
Jede gerade Linie senkrecht zu dieser Linie sollte parallel zur y-Achse sein und kann durch die Gleichung dargestellt werden
Da die Linie, deren Gleichung bestimmt werden soll, (-35,5) durchläuft und parallel zur y-Achse ist, hat sie einen Abstand von -35 von der y-Achse. Daher sollte seine Gleichung sein
Wie lautet die Gleichung der Linie, die durch (-1,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13, -1), (8,4)?
Sehen Sie sich unten einen Lösungsprozess an: Zuerst müssen wir die Steigung der beiden Punkte des Problems ermitteln. Die Steigung kann mithilfe der folgenden Formel ermittelt werden: m = (Farbe (rot) (y_2) - Farbe (blau) (y_1)) / (Farbe (rot) (x_2) - Farbe (blau) (x_1)) wobei m ist Die Neigung und (Farbe (blau) (x_1, y_1)) und (Farbe (rot) (x_2, y_2)) sind die zwei Punkte auf der Linie. Ersetzen der Werte aus den Punkten des Problems ergibt sich: m = (Farbe (rot) (4) - Farbe (blau) (- 1)) / (Farbe (rot) (8) - Farbe (blau) (13)) = (Farbe (rot) (4) + Farbe (blau) (1)) / (Farbe (rot) (8) - Farbe (blau) (13)) = 5 /
Wie lautet die Gleichung der Linie, die durch (-1,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13,1), (- 2,3)?
15x-2y + 17 = 0. Die Steigung m 'der Linie durch die Punkte P (13,1) & Q (-2,3) ist m' = (1-3) / (13 - (- 2)) = - 2/15. Also, wenn die Steigung der reqd. Zeile ist m, also als reqd. Linie ist bot zur Linie PQ, mm '= - 1 rArr m = 15/2. Jetzt verwenden wir die Slope-Point-Formel für die Anforderung. Linie, die bekanntermaßen durch den Punkt (-1,1) verläuft. Somit ist die Gl. von der reqd. Zeile ist, y-1 = 15/2 (x - (-1)) oder 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.
Wie lautet die Gleichung der Linie, die durch (-2,1) geht und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (1,4), (- 2,3)?
Der erste Schritt besteht darin, die Steigung der Linie durch (1,4) und (-2,3) zu ermitteln, die 1/3 beträgt. Dann haben alle Linien senkrecht zu dieser Linie die Neigung -3. Das Finden des y-Achsenabschnitts sagt uns, dass die Gleichung der Linie, nach der wir suchen, y = -3x-5 ist. Die Steigung der Linie durch (1,4) und (-2,3) ist gegeben durch: m = (y_2-y_1) / (x_2-x_1) = (3-4) / ((- 2) -1) = (-1) / (- 3) = 1/3 Wenn die Steigung einer Linie m ist, haben die dazu senkrechten Linien Steigung -1 / m. In diesem Fall beträgt die Steigung der senkrechten Linien -3. Die Form einer Linie ist y = mx + c, wobei c der y-