Antworten:
Erläuterung:
Dies gilt nicht als lokales Extremum.
Um nach den Wurzeln dieser kubischen Funktion zu suchen, verwenden wir die Newton-Raphson-Methode:
Dies ist ein iterativer Prozess, der uns näher an die Wurzel der Funktion bringt. Ich schließe den langwierigen Prozess hier nicht ein, aber nachdem wir an der ersten Wurzel angekommen sind, können wir eine lange Division durchführen und das verbleibende Quadrat einfach für die anderen zwei Wurzeln lösen.
Wir werden folgende Wurzeln bekommen:
Wir führen nun einen ersten Ableitungstest durch und versuchen Werte links und rechts von jeder Wurzel, um zu sehen, wo die Ableitung positiv oder negativ ist.
Dies sagt uns, welcher Punkt ein Maximum und welcher ein Minimum ist.
Das Ergebnis wird wie folgt aussehen:
In der folgenden Grafik sehen Sie eines der Minimums:
Die folgende Ansicht zeigt das Maximum und das andere Minimum:
Was sind die globalen und lokalen Extrema von f (x) = 2x ^ 7-2x ^ 5?
Wir schreiben f als f (x) = 2x ^ 7 * (1-1 / x ^ 2) um, aber lim_ (x-> oo) f (x) = oo, daher gibt es keine globalen Extrema. Für das lokale Extrema finden wir die Punkte, an denen (df) / dx = 0f '(x) = 0 => 14x ^ 6-10x ^ 4 = 0 => 2 * x ^ 4 * (7 * x ^ 2-5) ) = 0 => x_1 = sqrt (5/7) und x_2 = -sqrt (5/7) Daher haben wir das lokale Maximum bei x = -sqrt (5/7) f (-sqrt (5/7)) = 100/343 * sqrt (5/7) und lokales Minimum bei x = sqrt (5/7) ist f (sqrt (5/7)) = - 100/343 * sqrt (5/7)
Was sind die globalen und lokalen Extrema von f (x) = 8x ^ 3-4x ^ 2 + 6?
Die lokalen Extrema sind (0,6) und (1 / 3,158 / 27) und die globalen Extrema sind + -oo. Wir verwenden (x ^ n) '= nx ^ (n-1). Lassen Sie uns die erste Ableitung f' finden ( x) = 24x ^ 2-8x Für lokale Extremwerte f '(x) = 0 Also 24x ^ 2-8x = 8x (3x-1) = 0 x = 0 und x = 1/3 Wir wollen also ein Zeichendiagramm xcolor erstellen (weiß) (aaaaa) -Oocolor (weiß) (aaaaa) 0Farbe (weiß) (aaaaa) 1/3 Farbe (weiß) (aaaaa) + oo f '(x) Farbe (weiß) (aaaaa) + Farbe (weiß) ( aaaaa) -Farbe (weiß) (aaaaa) + f (x) Farbe (weiß) (aaaaaa) uarrcolor (weiß) (aaaaa) darrcolor (wei
Welches sind die lokalen Extrema von f (x) = a (x-2) (x-3) (x-b), wenn a und b ganze Zahlen sind?
F (x) = a (x-2) (x-3) (xb) Die lokalen Extremwerte gehorchen (df) / dx = a (6 + 5 b - 2 (5 + b) x + 3 x ^ 2) = 0 Wenn nun ne 0 ist, haben wir x = 1/3 (5 + b pm sqrt [7 - 5 b + b ^ 2]), aber 7 - 5 b + b ^ 2 gt 0 (hat komplexe Wurzeln), so dass f ( x) hat immer ein lokales Minimum und ein lokales Maximum. Angenommen eine ne 0