Bewiesen
In Schritt 3 Die folgenden Formeln werden verwendet
und
Antworten:
Bitte sehen Sie die Erklärung. Ich habe jeden Schritt dieses Beweises mit www.WolframAlpha.com bestätigt
Erläuterung:
Beide Seiten mit multiplizieren
Ersatz
Multipliziere das Quadrat:
Verteilen Sie die -3:
Kombinieren Sie wie folgt:
Beide Seiten durch 2 teilen:
Ersatz
Erweitern Sie den Würfel:
Verteilen Sie die -1:
Kombinieren Sie wie folgt:
Die rechte ist identisch mit der linken. Q.E.D.
Sei f (x) = x-1. 1) Stellen Sie sicher, dass f (x) weder gerade noch ungerade ist. 2) Kann f (x) als Summe einer geraden und einer ungeraden Funktion geschrieben werden? a) Wenn ja, zeigen Sie eine Lösung. Gibt es mehr Lösungen? b) Falls nicht, beweisen Sie, dass dies unmöglich ist.
Sei f (x) = | x -1 |. Wenn f gerade wäre, dann wäre f (-x) für alle x gleich f (x). Wenn f ungerade wäre, dann wäre f (-x) für alle x -f (x). Beachten Sie, dass für x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Da 0 nicht gleich 2 oder -2 ist, ist f weder gerade noch ungerade. Könnte f als g (x) + h (x) geschrieben werden, wobei g gerade ist und h ungerade ist? Wenn das wahr wäre, dann g (x) + h (x) = | x - 1 |. Rufen Sie diese Anweisung auf 1. Ersetzen Sie x durch -x. g (-x) + h (-x) = | -x - 1 | Da g gerade ist und h ungerade ist, haben wir: g (x) - h (x) = | -x - 1 | Nennen Sie
"Lena hat 2 aufeinanderfolgende Ganzzahlen.Sie bemerkt, dass ihre Summe der Differenz zwischen ihren Quadraten entspricht. Lena wählt zwei weitere aufeinanderfolgende Ganzzahlen aus und bemerkt dasselbe. Beweisen Sie algebraisch, dass dies für zwei aufeinanderfolgende ganze Zahlen gilt.
Bitte beziehen Sie sich auf die Erklärung. Es sei daran erinnert, dass die aufeinanderfolgenden ganzen Zahlen sich um 1 unterscheiden. Wenn m eine ganze Zahl ist, muss die nachfolgende ganze Zahl also n + 1 sein. Die Summe dieser zwei ganzen Zahlen ist n + (n + 1) = 2n + 1. Der Unterschied zwischen ihren Quadraten ist (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, je nach Wunsch! Fühle die Freude an Mathe!
Beweisen Sie, dass bei einer Linie und einem Punkt, der nicht auf dieser Linie liegt, genau eine Linie, die durch diesen Punkt verläuft, senkrecht durch diese Linie verläuft? Sie können dies mathematisch oder durch Konstruktion tun (die alten Griechen haben es getan)?
Siehe unten. Nehmen wir an, dass die gegebene Linie AB ist und der Punkt P ist, was nicht auf AB ist. Nehmen wir an, Wir haben eine senkrechte PO auf AB gezeichnet. Wir müssen beweisen, dass diese PO die einzige durch P verlaufende Linie ist, die senkrecht zu AB verläuft. Jetzt werden wir eine Konstruktion verwenden. Konstruieren wir einen weiteren senkrechten PC auf AB von Punkt P aus. Nun der Beweis. Wir haben, OP senkrecht AB [ich kann das senkrechte Vorzeichen, wie Annyoing nicht verwenden] und auch PC senkrecht AB. Also OP || PC. [Beide sind lotrecht auf derselben Linie.] Nun haben sowohl OP als auch PC den