Antworten:
m = - 2
Erläuterung:
Um die Steigung einer Linie zu ermitteln, die 2 Punkte verbindet, verwenden Sie die Verlaufsformel.
# m = (y_2 - y_1) / (x_2 - x_1) # woher
# (x_1, y_1) = (0, - 1), (x_2, y_2) = (- 1, 1) # (Ersetzen Sie die Werte in die Formel)
# m = (1 - (-1)) / (- 1 - 0) = 2 / -1 = - 2 #
Die Gleichung einer Linie ist 2x + 3y - 7 = 0. Finden Sie: - (1) Steigung der Linie (2) die Gleichung einer Linie senkrecht zu der angegebenen Linie und durch den Schnittpunkt der Linie x-y + 2 = 0 und 3x + y-10 = 0?
-3x + 2y-2 = 0 Farbe (weiß) ("ddd") -> Farbe (weiß) ("ddd") y = 3 / 2x + 1 Der erste Teil enthält viele Details, die zeigen, wie die ersten Prinzipien funktionieren. Wenn Sie sich daran gewöhnt haben und Kurzwahlen verwenden, werden Sie weniger Zeilen verwenden. Farbe (blau) ("Bestimmen Sie den Schnittpunkt der Anfangsgleichungen") x-y + 2 = 0 "" ....... Gleichung (1) 3x + y-10 = 0 "" .... Gleichung ( 2) Ziehen Sie x von beiden Seiten von Gleichung (1) ab, und erhalten Sie -y + 2 = -x. Multiplizieren Sie beide Seiten mit (-1) + y-2 = + x ) Verwenden S
Wie ist die Steigung einer Linie, die senkrecht zu einer Linie mit einer Steigung von -4/3 ist?
3/4 Wir suchen nach dem negativen Kehrwert, d. H. M ist der Gradient, also brauchen wir 1 / -m. Also nur 3/4
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo