Antworten:
Gleichung einer Linie, die einen Punkt enthält
Erläuterung:
Gleichung einer Linie, die einen Punkt enthält
Daher die Gleichung einer Linie, die einen Punkt enthält
Die Gleichung der Linie QR lautet y = - 1/2 x + 1. Wie schreibt man eine Gleichung einer Linie senkrecht zur Linie QR in Steigungsschnittpunktform, die den Punkt (5, 6) enthält?
Sehen Sie sich unten einen Lösungsprozess an: Zuerst müssen wir die Steigung der beiden Punkte des Problems ermitteln. Die Linie QR hat die Form eines Gefälles. Die Steigungsschnittform einer linearen Gleichung lautet: y = Farbe (rot) (m) x + Farbe (blau) (b) Wobei Farbe (rot) (m) die Steigung und Farbe (blau) (b) ist y-Achsenwert. y = Farbe (rot) (- 1/2) x + Farbe (blau) (1) Daher ist die Steigung von QR: Farbe (rot) (m = -1/2). Als Nächstes nennen wir die Steigung für die Linie senkrecht zu diesem m_p Die Regel für senkrechte Flanken lautet: m_p = -1 / m Wenn wir die berechnete Steigung eins
Wie lautet die Gleichung einer Linie, die durch den Punkt (0, 2) verläuft und senkrecht zu einer Linie mit einer Steigung von 3 verläuft?
Y = -1/3 x + 2> Für 2 senkrechte Linien mit Gradienten m_1 "und" m_2 dann m_1. m_2 = -1 hier 3 xx m = - 1 rArr m = -1/3 Gleichung der Linie, y - b = m (x - a) ist erforderlich. mit m = -1/3 "und (a, b) = (0, 2)" also y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2
Wie lautet die Gleichung einer Linie, die durch den Punkt (0, -3) verläuft und senkrecht zu einer Linie mit einer Steigung von 4 verläuft?
X + 4y + 12 = 0 Da das Produkt der Steigungen zweier senkrechter Linien -1 und der Steigungen einer Linie 4 beträgt, ist die Steigung der durch (0, -3) verlaufenden Linie mit -1/4 angegeben. Unter Verwendung der Punktsteigungsformgleichung (y-y_1) = m (x-x_1) lautet die Gleichung (y - (- 3)) = - 1/4 (x-0) oder y + 3 = -x / 4 Wenn man nun jede Seite mit 4 multipliziert, erhält man 4 (y + 3) = - 4 * x / 4 oder 4y + 12 = -x oder x + 4y + 12 = 0