Der grüne Tank enthält 23 Gallonen Wasser und wird mit einer Geschwindigkeit von 4 Gallonen / Minute gefüllt. Der rote Tank enthält 10 Gallonen Wasser und wird mit einer Geschwindigkeit von 5 Gallonen / Minute gefüllt. Wann werden die beiden Tanks die gleiche Wassermenge enthalten?
Nach 13 Minuten enthält der Tank die gleiche Menge, d. H. 75 Gallonen Wasser. In 1 Minute füllt der rote Tank 5-4 = 1 Gallone Wasser mehr als das des grünen Tanks. Der grüne Tank enthält 23 bis 10 Liter mehr Wasser als der rote Tank. Der rote Tank benötigt also 13/1 = 13 Minuten, um dieselbe Menge Wasser mit dem grünen Tank aufzunehmen. Nach 13 Minuten enthält der grüne Tank C = 23 + 4 * 13 = 75 Gallonen Wasser und nach 13 Minuten enthält der rote Tank C = 10 + 5 * 13 = 75 Gallonen Wasser. Nach 13 Minuten enthält der Tank die gleiche Menge, d. H. 75 Gallonen Wasser. [A
Wasser wird aus einem kegelförmigen Behälter mit einem Durchmesser von 10 Fuß und einer Tiefe von 10 Fuß mit einer konstanten Geschwindigkeit von 3 Fuß3 / min abgelassen. Wie schnell fällt der Wasserstand ab, wenn die Wassertiefe 6 Fuß beträgt?
Das Verhältnis des Radius r der oberen Wasseroberfläche zur Wassertiefe w ist eine Konstante, die von den Gesamtabmessungen des Kegels abhängt. R / w = 5/10 rarr r = w / 2 Das Volumen des Kegels von Wasser ergibt sich aus der Formel V (w, r) = pi / 3 r ^ 2w oder in Bezug auf gerade w für die gegebene Situation V (w) = pi / (12) w ^ 3 (dV) / (dw) = pi / 4w ^ 2 rarr (dw) / (dV) = 4 / (piw ^ 2) Wir erfahren, dass (dV) / (dt) = -3 (cu.ft./min.) (dw) / ( dt) = (dw) / (dV) * (dV) / (dt) = 4 / (piw ^ 2) * (- 3) = (- 12) / (piw ^ 2) Wenn w = 6 ist, ist die Wassertiefe Ändern mit einer Rate von (dw) / (dt)
Wasser tritt mit einer Geschwindigkeit von 10.000 cm3 / min aus einem umgekehrten konischen Tank aus, während Wasser mit einer konstanten Rate in den Tank gepumpt wird, wenn der Tank eine Höhe von 6 m hat und der Durchmesser an der Spitze 4 m beträgt Wenn der Wasserstand bei einer Höhe von 2 m um 20 cm / min ansteigt, wie finden Sie die Geschwindigkeit, mit der das Wasser in den Tank gepumpt wird?
Sei V das Volumen des Wassers in dem Tank in cm 3; h sei die Tiefe / Höhe des Wassers in cm; und sei r der Radius der Wasseroberfläche (oben) in cm. Da der Tank ein umgekehrter Kegel ist, ist dies auch die Wassermasse. Da der Tank eine Höhe von 6 m und einen Radius am oberen Rand von 2 m hat, implizieren ähnliche Dreiecke, dass frac {h} {r} = frac {6} {2} = 3 ist, so dass h = 3r ist. Das Volumen des umgekehrten Wasserkegels ist dann V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Unterscheiden Sie nun beide Seiten bezüglich der Zeit t (in Minuten), um frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} z