Wie lösen Sie sqrt (3x) + 8 = x + 2?

Wie lösen Sie sqrt (3x) + 8 = x + 2?
Anonim

Antworten:

# x = {3,12} #

Erläuterung:

#sqrt (3x) + 8 = x + 2 #

#sqrt (3x) = x + 2-8 #

#sqrt (3x) = x-6 #

# (sqrt (3x)) ^ 2 = (x-6) ^ 2 #

# 3x = x ^ 2-12x + 36 #

# x ^ 2-12x-3x + 36 = 0 #

# x ^ 2-15x + 36 = 0 #

# (x-12) (x-3) = 0 #

# "wenn (x-12) = 0, dann ist x = 12" #

# "wenn (x-3) = 0, dann ist x = 3" #

# x = {3,12} #

Antworten:

3 und 12

Erläuterung:

#sqrt (3x) + 8 = x + 2 #

Isolieren Sie den Radikalbegriff.

#sqrt (3x) = x - 6 #

Quadrat auf beiden Seiten:

# 3x = (x - 6) ^ 2 = x ^ 2 - 12x + 36 #

# x ^ 2 - 15x + 36 = 0 #

Finden Sie 2 Zahlen (echte Wurzeln), die die Summe (15 = -b) und das Produkt (c = 36) kennen. Sie sind: 3 und 12.