Antworten:
Siehe unten:
Erläuterung:
Holz besteht hauptsächlich aus Cellulose, einem Polymer, das aus vielen besteht
Technisch gesehen ist das Verbrennen von Holz dem Abbau von Kohlenhydraten in Ihrem Körper chemisch ähnlich, um Energie zu erzeugen.
Die Reaktion des Holzbrennens wäre also mehr oder weniger:
Cellulose + Sauerstoff -> Kohlendioxid + Wasser
Diese Reaktion ist auch exotherm und gibt Wärme an die Umgebung ab. Man könnte also sagen, dass die Art der Änderung darin besteht, dass die potentielle chemische Energie des Kohlenhydrats beim Zusammenbruch in Wärmeenergie umgewandelt wird.
Das feste Holz wird auch in der Reaktion verbraucht und hinterlässt Asche, die möglicherweise nicht ordnungsgemäß verbrannt werden kann.
Also zusammenfassend:
Die Verbrennung von Holz ist eine exotherme Reaktion, die die in der Cellulose gespeicherte chemische potentielle Energie in Wärmeenergie (und Licht) umwandelt.
Die bemerkenswertesten Veränderungen sind die Abgabe von Wärme an die Umgebung und der Abbau des Holzes zu Wasserdampf und Kohlendioxid.
Wasser tritt mit einer Geschwindigkeit von 10.000 cm3 / min aus einem umgekehrten konischen Tank aus, während Wasser mit einer konstanten Rate in den Tank gepumpt wird, wenn der Tank eine Höhe von 6 m hat und der Durchmesser an der Spitze 4 m beträgt Wenn der Wasserstand bei einer Höhe von 2 m um 20 cm / min ansteigt, wie finden Sie die Geschwindigkeit, mit der das Wasser in den Tank gepumpt wird?
Sei V das Volumen des Wassers in dem Tank in cm 3; h sei die Tiefe / Höhe des Wassers in cm; und sei r der Radius der Wasseroberfläche (oben) in cm. Da der Tank ein umgekehrter Kegel ist, ist dies auch die Wassermasse. Da der Tank eine Höhe von 6 m und einen Radius am oberen Rand von 2 m hat, implizieren ähnliche Dreiecke, dass frac {h} {r} = frac {6} {2} = 3 ist, so dass h = 3r ist. Das Volumen des umgekehrten Wasserkegels ist dann V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Unterscheiden Sie nun beide Seiten bezüglich der Zeit t (in Minuten), um frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} z
Wenn 3,0 g Kohlenstoff in 8,0 g Sauerstoff verbrannt werden, entstehen 11,0 g Kohlendioxid. Wie groß ist die Masse an Kohlendioxid, wenn 3,0 g Kohlenstoff in 50,0 g Sauerstoff verbrannt werden? Welches Gesetz der chemischen Kombination wird die Antwort bestimmen?
Es wird wieder eine Masse von 11,0 * g Kohlendioxid erzeugt. Wenn eine Masse von 3,0 * g Kohlenstoff in einer Masse von 8,0 * g Sauerstoff verbrannt wird, sind Kohlenstoff und Sauerstoff stöchiometrisch äquivalent. Natürlich läuft die Verbrennungsreaktion gemäß der folgenden Reaktion ab: C (s) + O_2 (g) rarr CO_2 (g) Wenn eine 3,0 * g Masse an Kohlenstoff in einer 50,0 * g Masse an Sauerstoff verbrannt wird, ist der Sauerstoff vorhanden in stöchiometrischem Überschuss. Der 42,0-g-Überschuss an Sauerstoff liegt für die Fahrt vor. Für beide Beispiele gilt das Massenerhal
Wenn eine Zufuhr von Wasserstoffgas in einem 4-Liter-Behälter bei 320 K gehalten wird, übt es einen Druck von 800 Torr aus. Der Vorrat wird in einen 2-Liter-Behälter gefüllt und auf 160 K abgekühlt. Wie ist der neue Druck des eingeschlossenen Gases?
Die Antwort lautet P_2 = 800 bis oR. Der beste Weg, um dieses Problem anzugehen, ist das ideale Gasgesetz PV = nRT. Da der Wasserstoff von einem Container in einen anderen bewegt wird, gehen wir davon aus, dass die Molzahl konstant bleibt. Dies ergibt zwei Gleichungen P_1V_1 = nRT_1 und P_2V_2 = nRT_2. Da R auch eine Konstante ist, können wir nR = (P_1V_1) / T_1 = (P_2V_2) / T_2 -> das kombinierte Gasgesetz schreiben. Daher haben wir P_2 = V_1 / V_2 * T_2 / T_1 * P_1 = (4L) / (2L) * (160K) / (320K) * 800t rr = 800t rr.